$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

마지막 빙하기 동안 베링해 알류샨 분지 북부 지역의 점토광물 조성 변화
Changes of Clay Mineral Assemblages in the Northern Part of the Aleutian Basin in the Bering Sea during the Last Glacial Period 원문보기

韓國鑛物學會誌 = Journal of the Mineralogical Society of Korea, v.24 no.1, 2011년, pp.19 - 29  

김성한 (부산대학교 지구환경시스템학부) ,  조현구 (경상대학교 지구환경과학과) ,  김부근 (부산대학교 지구환경시스템학부)

초록
AI-Helper 아이콘AI-Helper

베링해 알류샨 분지의 북부 사면지역에서 채취된 피스톤 코아 PC25A의 퇴적물에서 점토광물의 반정량적 함량 분석을 통해 지난 마지막 빙하기 동안 퇴적물의 기원지와 운송 경로의 변화를 살펴보았다. 코아 PC25A의 연대는 방산충 L. nipponica sakaii의 마지막 출현 시기($48.6{\pm}2\; ka$)와 인근 지역에서 채취한 연대가 잘 정립된 코아 PC23A의 퇴적물 색도($a^{\ast},\; b^{\ast}$) 및 퇴적 엽리층의 대비를 통해 설정되었다. 코아 PC25A의 최하단부가 약 57,600년 전으로 계산되었고, 코아 상부는 손실된 것으로 판단된다. 지난 마지막 빙하기 동안 스멕타이트, 일라이트, 캐올리나이트, 녹니석의 평균 함량은 각각 11% (5~24%), 47% (36~58%), 13% (9~19%), 29% (21~40%)이다. 코아 PC25A의 인근 지역에서 채취한 코아 MC24에서 분석된 홀로세의 점토광물 함량에 비하여 마지막 빙하기동안에 특징적으로 일라이트 함량이 증가하였고 스멕타이트 함량은 감소하였다. 따뜻한 기후의 홀로세 전기(Early Holocene) 동안 일라이트 함량이 높은 점토 퇴적물이 알라스카 대륙의 북부 지역(Province 1)으로부터 유입되는 융빙수에 의해 운반된 것으로 판단된다. MIS 2의 후빙기(B${\phi}$lling-All${\phi}$rod)동안에도 융빙수에 의해 점토광물이 운반되었으나, 일라이트 함량이 홀로 세 전기에 비해 낮기 때문에 북쪽의 Province 1보다는 남쪽에 위치한 Province 2와 Province 3에서 점토입자들이 기원된 것으로 해석된다. 마지막 최대 빙하기(Last Glacial Maximum)동안 나타나는 높은 스멕타이트 함량은 베링해 남동쪽 알라스카 반도 인근 지역(Province 4)에서 공급되는 점토 퇴적물의 양이 증가하였기 때문으로 보인다. MIS 3 초기에서 중기로 가면서 일라이트와 스멕타이트 함량이 감소하고, 녹니석의 함량은 증가하였다. MIS 3 동안 해수면이 낮아지면서 Province 2와 Province 3에서 점토 퇴적물의 공급이 증가한 것으로 보인다. 베링해 알류산 분지의 북부 사면지역에서 채취된 코아 PC25A에서 분석된 점토광물 조성의 변화는 마지막 빙하기동안 해수면의 하강으로 인하여 점토광물의 이동과 관련된 베링해의 표층 해류 순환이 현재와는 다른 양상으로 변화되었기 때문이다.

Abstract AI-Helper 아이콘AI-Helper

Clay mineral assemblages of core PC25A collected from the northern part of the Aleutian Basin in the Bering Sea were examined in order to investigate changes in sediment provenances and transport pathways. Ages of core PC25A were determined by both Last Appearance Datum of radiolaria (L. nipponica s...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • 스멕타이트, 일라이트, 캐올리나이트와 녹니석 합의 상대적인 양은 각각 에틸렌 글리콜 처리된 시료의 X-선 회절분석도에서 17 Å (001) 피크 면적, 10 Å (001) 피크 면적, 7 Å 피크 면적을 합하여 100%로 가정하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
본 연구에서 피스톤 코아 PC25A의 퇴적물에서 어떤 분석을 하였는가? 베링해 알류샨 분지의 북부 사면지역에서 채취된 피스톤 코아 PC25A의 퇴적물에서 점토광물의 반정량적 함량 분석을 통해 지난 마지막 빙하기 동안 퇴적물의 기원지와 운송 경로의 변화를 살펴보았다. 코아 PC25A의 연대는 방산충 L.
피스톤 코아 PC25A는 어디서 채취되었는가? 베링해 알류샨 분지의 북부 사면지역에서 채취된 피스톤 코아 PC25A의 퇴적물에서 점토광물의 반정량적 함량 분석을 통해 지난 마지막 빙하기 동안 퇴적물의 기원지와 운송 경로의 변화를 살펴보았다. 코아 PC25A의 연대는 방산충 L.
피스톤 코아 PC25A의 최하단부는 몇 년으로 계산되었는가? 6{\pm}2\; ka$)와 인근 지역에서 채취한 연대가 잘 정립된 코아 PC23A의 퇴적물 색도($a^{\ast},\; b^{\ast}$) 및 퇴적 엽리층의 대비를 통해 설정되었다. 코아 PC25A의 최하단부가 약 57,600년 전으로 계산되었고, 코아 상부는 손실된 것으로 판단된다. 지난 마지막 빙하기 동안 스멕타이트, 일라이트, 캐올리나이트, 녹니석의 평균 함량은 각각 11% (5~24%), 47% (36~58%), 13% (9~19%), 29% (21~40%)이다.
질의응답 정보가 도움이 되었나요?

참고문헌 (38)

  1. 김성한, 김부근, 신혜선, Uchida, M., Itaki, T., and Ohkushi, K. (2009) 베링해 중부 지역의 마지막 빙하 기 이후 고생산성의 고해상 변화. 한국해양학회지, 14, 133-144. 

  2. Biscaye, P.E. (1964) Distribution between kaolinite and chlorite in recent sediments by x-ray diffraction. Am. Mineral., 49, 1281-1289. 

  3. Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and Adjacent Seas and Oceans. Geol. Soc. Am. Bull., 76, 803-832. 

  4. Bouquillon, A., France-Lanord, C., Michard, A., and Tiercelin, J.J. (1990) Sedimentology and isotopic chemistry of the Bengal Fan sediments: the denudation of the Himalaya. In: Cocharn, J.R., Stow, D.A.V., et al. (eds.), Proc. ODP: Sci. Results, Ocean Drilling Program Vol. 116, ODP: College Station, TX, 43-58. 

  5. Brindley, G.W. (1980) Order-disorder in clay mineral structures. In: Brindley, G.W. and Brown, G. (eds.), Crystal structures of clay minerals and their X-ray identification. Mineralogical Society Monograph, 5, 125-195. 

  6. Brunelle, B.G., Sigman, D.M., Cook, M.S., Keigwin, L.D., Haug, G.H., Plessen, B., Schettler, G., and Jaccard, S.L. (2007) Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes. Paleoceanography, 22, PA1215, doi:10.1029/ 2005PA001205. 

  7. Brunton, G.D. (1955) Vapour pressure glycolation of oriented clay minerals. Am. Mineral., 40, 803-832. 

  8. Chamley, H. (1989) Clay Sedimentology. Springer-Verlag, Berlin, 623p. 

  9. Chamley, H. (1997) Clay mineral sedimentation in the ocean. In: Paquet, G. and Clauer, N. (eds), Soils and sediments, Mineralogy and Geochemistry. Springer, 269-302. 

  10. Coachman, L.K., Aagaard, K., and Tripp, R.B. (1975) Bering Strait: The Regional Oceanography. University of Washington Press, Seattle, 172p. 

  11. Cook, M.S., Keigwin, L.D., and Sancetta, C.A. (2005) The deglacial history of surface and intermediate water of the Bering Sea. Deep-Sea Res. II, 52, 2163-2173. 

  12. Damiani, D., Giorgetti, G., and Turbanti, I.M. (2006) Clay mineral fluctuations and surface textural analysis of quartz grains in Pliocene-Quaternary marine sediments from Wilkes Land continental rise (East- Antarctica): Paleoenvironmental significance. Mar. Geol., 226, 281-295. 

  13. Deer, W.A., Howie, R.A., and Zussaman, J. (1966) An introduction to the rock forming minerals. Longmans, London, 528p. 

  14. Diekmann, B., Kuhn, G., Mackensen, A., Petschick, R., Futterer, D.K., Gersonde, R., Riuhlemann, C., and Niebler, H.S. (1999) Kaolinite and chlorite as tracers of modern and late Quaternary deep water circulation in the South Atlantic and the adjoining Southern Ocean. In: Fischer, G. and Wefer, G. (eds.), Use of Proxies in Paleoceanography: examples from the South Atlanic. Springer-Verlag, Berlin, Heidelberg, 1-29. 

  15. Ehrmann, W.U., Melles, M., Kuhn, G., and Grobe, H. (1992) Significance of clay mineral assemblages in the Antarctic Ocean. Mar. Geol., 107, 249-273. 

  16. Fairbanks, R.G. (1989) A 17,000-year glacioeustatic sealevel record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 342, 637-642. 

  17. France-Lanord, C., Derry, L., and Michard, A. (1993) Evolution of the Himalaya since Miocene times: isotopic and sedimentological evidence from the Bengal Fan. In: Treloar, P.J. and Searle, M. (eds.), Himalayan Tectonics. Spec. Publ. Geol. Soc. London, 7, 603-621. 

  18. Gingele, F.X. (1996) Holocene climatic optimum in Southwest Africa - evidence from the marine clay mineral record. Paleogeogr. Palaeoclimatol. Palaeoecol. 122, 77-87. 

  19. Gorbarenko, S.A., Basov, I.A., Chekhovskaya, M.P., Southon, J., Khusid, T.A., and Artemova, A.V. (2005) Orbital and millennium scale environmental changes in the southern Bering Sea during the last glacial- Holocene: geochemical and paleontological evidence. Deep-Sea Res. II, 52, 2174-2185. 

  20. Grim, R.E. (1968) Clay Mineralogy. McGraw-Hill, New York, 596p. 

  21. Itaki, T., Uchida, M., Kim, S., Shin, H.S., Tada, R., and Khim, B.K. (2009) Late Pleistocene stratigraphy and paleoceanographic implications in northern Bering Sea slope sediments: evidence from the radiolarian species Cycladophora davisiana. Jour. Quat. Sci., 24, 856-865. 

  22. Katsuki, K. and Takahashi, K. (2005) Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the late Quaternary. Deep-Sea Res. II, 52, 2110-2130. 

  23. Keigwin, L.D., Donnelly, J.P., Cook, M.S., Driscoll, N.W., and Brigham-Grette, J. (2006) Rapid sea-level rise and Holocene climate in the Chukchi Sea. Geology, 34, 861-864. 

  24. Khim, B.K. and Park, Y.A. (1992) Smectite as a possible source-indicative clay mineral in the Yellow Sea. Geo-Mar. Lett., 12, 228-231. 

  25. Morley, J.J., Hays, J.D., and Robertson, J.H. (1982) Stratigraphic framework for the late Pleistocene in the northwest Pacific Ocean. Deep-Sea Res., 29, 1485-1499. 

  26. Naidu, A.S., Creager, J.S., and Mowatt, T.C. (1982) Clay mineral dispersal patterns in the north Bering and Chukchi Seas. Mar. Geol., 47, 1-15. 

  27. Naidu, A.S. and Mowatt, T.C. (1983) Sources and dispersal patterns of clay minerals in surface sediments from the continental-shelf areas off Alaska. Geol. Soc. Am. Bull., 94, 841-854. 

  28. Niebauer, H.J., Bond, N.A., Yakunin, L.P., and Plotnikov, V.V. (1999) An update on the climatology and sea ice of the Bering Sea. In: Loughlin, T.R. and Ohtani, K. (eds.), Dynamics of the Bering Sea, Univ. Alaska Sea Grant, Fairbanks, 29-59. 

  29. Park, Y.A. and Khim, B.K. (1992) Origin and dispersal of the recent clay minerals in the Yellow Sea. Mar. Geol., 104, 205-213. 

  30. Sancetta, C., Heusser, L., Labeyrie, L., Naidu, S.A., and Robinson, S.W. (1985) Wisconsin-Holocene paleoenvironment of the Bering Sea: evidence from diatoms, pollen, oxygen isotopes and clay minerals. Mar. Geol., 62, 55-68. 

  31. Singer, A. (1984) The paleoclimatic interpretation of clay minerals in sediments - a review. Earth Sci. Rev., 21, 251-293. 

  32. Siroko, F. and Lange, H. (1991) Clay accumulation rates in the Arabian Sea during the late Quaternary. Mar. Geol., 97, 105-119. 

  33. Stabeno, P.J., Schumacher, J.D., and Ohtani, K. (1999) The physical oceanography of the Bering Sea. In: Loughlin, T.R. and Ohtani, K. (eds.), Dynamics of the Bering Sea, Univ. Alaska Sea Grant, Fairbanks, 1-28. 

  34. Stephan, S., Hanebuth, T.J.J., Vogt, C., and Stattegger, K. (2008) Sea level induced variations in clay mineral composition in the southwestern South China over the past 17,000 yr. Mar. Geol., 250, 199-210. 

  35. Stokke, P.R. and Carson, B. (1973) Variation in clay mineral X-ray diffraction results with the quantity of sample mounted. Jour. Sediment. Petrol., 43, 957-964. 

  36. Thamban, M., Rao, V.P., and Schneider, R.R. (2002) Reconstruction of late Quaternary monsoon oscillations based on clay mineral proxies using sediment cores from the western margin of India. Mar. Geol., 186, 527-539. 

  37. Trentesaux, A., Liu, Z., Colin, C., Clemens, S.C., Boulay, S., and Wang, P. (2003) Pleistocene paleoclimatic cyclicity of southern China: clay mineral evidence recorded in the South China Sea (ODP Site 1146). In: Prell, W.L. Wang, P., Blum, P., and Clemens, S., (eds.), Proc. ODP Sci. Res., Vol. 184, 1-10 (online). 

  38. Vanderaveroet, P., Averbuch, O., Deconinck, J.F., and Chamley, H. (1999) A record of glacial/interglacial alternations in Pleistocene sediments off New Jersey expressed by clay mineral, grain size and magnetic susceptibility data. Mar. Geol., 159, 79-92. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로