[국내논문]산불에 따른 참나무의 화염확산 메커니즘 규명 및 화재조사에 관한 연구 A Study on Fire Investigations and Identification of Flame Spread Mechanism of the Oaks according to Forest Fire원문보기
본 연구에서는 참나무류를 대상으로 산불에 따른 화염확산 메커니즘과 화재조사를 고찰하였다. 측정 장비로는 콘칼로리미터와 발화온도시험기를 이용하였다. 부위별 무염착화가 진행된 온도범위는 생엽의 경우, $346{\sim}382^{\circ}C$, 가지 $375{\sim}494^{\circ}C$, 수피 $396{\sim}473^{\circ}C$ 온도 구간에서 수종별 차이가 있었고, 함수율이 높은 생엽은 무염착화위험성이 상대적으로 높은 것을 확인할 수 있었다. 또한, 발염착화가 진행된 시간을 살펴보면, 생엽 67초, 가지 203초, 수피 23초로서 함수율이 현저히 낮은 수피부위는 빠른 시간에 발염착화 되었으며, 착화 후 가장 오랜 시간 화염이 지속되는 것을 알 수 있었다. 총열방출량은 생엽의 경우 $18{\sim}53MJ/m^2$, 가지부위 $41{\sim}80MJ/m^2$, 수피부위는 $19{\sim}110MJ/m^2$ 정도 범위에서 수종별 발열량 차이가 크게 다른 것으로 나타났으며, 굴참나무는 부위별 발열량이 비교적 높은 수종인 것을 확인할 수 있었다. 따라서 산불발생 시 굴참나무 군락지는 발열량이 높기 때문에 높은 화재하중에 따른 화재경로를 파악하는데 중요한 단서가 될 수 있을 뿐만 아니라 최대 화재 밀도지역으로 구분하여 화염확산 및 화재강도 예측에 있어서도 유효한 단서가 될 수 있을 것으로 판단된다.
본 연구에서는 참나무류를 대상으로 산불에 따른 화염확산 메커니즘과 화재조사를 고찰하였다. 측정 장비로는 콘칼로리미터와 발화온도시험기를 이용하였다. 부위별 무염착화가 진행된 온도범위는 생엽의 경우, $346{\sim}382^{\circ}C$, 가지 $375{\sim}494^{\circ}C$, 수피 $396{\sim}473^{\circ}C$ 온도 구간에서 수종별 차이가 있었고, 함수율이 높은 생엽은 무염착화위험성이 상대적으로 높은 것을 확인할 수 있었다. 또한, 발염착화가 진행된 시간을 살펴보면, 생엽 67초, 가지 203초, 수피 23초로서 함수율이 현저히 낮은 수피부위는 빠른 시간에 발염착화 되었으며, 착화 후 가장 오랜 시간 화염이 지속되는 것을 알 수 있었다. 총열방출량은 생엽의 경우 $18{\sim}53MJ/m^2$, 가지부위 $41{\sim}80MJ/m^2$, 수피부위는 $19{\sim}110MJ/m^2$ 정도 범위에서 수종별 발열량 차이가 크게 다른 것으로 나타났으며, 굴참나무는 부위별 발열량이 비교적 높은 수종인 것을 확인할 수 있었다. 따라서 산불발생 시 굴참나무 군락지는 발열량이 높기 때문에 높은 화재하중에 따른 화재경로를 파악하는데 중요한 단서가 될 수 있을 뿐만 아니라 최대 화재 밀도지역으로 구분하여 화염확산 및 화재강도 예측에 있어서도 유효한 단서가 될 수 있을 것으로 판단된다.
In this study, we considered the mechanism of the flame spread and the fire investigation for oaks by forest fire. Cone calorimeter and ignition temperature tester were used as the equipments for this study. The temperature range of non-flame ignition was $346{\sim}382^{\circ}C$ for livin...
In this study, we considered the mechanism of the flame spread and the fire investigation for oaks by forest fire. Cone calorimeter and ignition temperature tester were used as the equipments for this study. The temperature range of non-flame ignition was $346{\sim}382^{\circ}C$ for living leaves, $375{\sim}494^{\circ}C$ for branches, and $396{\sim}473^{\circ}C$ for barks, respectively, which showed the difference by kind of trees. Thus, it was confirmed that the green leaves with high moisture content had relatively high risk of non-flame ignition. Also, the time of flaming ignition was 67 sec for living leaves, 203 sec for branches, and 23 sec for barks measured, respectively. Accordingly, it was confirmed that bark part with very low moisture content was flamingly ignited in a shorter time and its flame persisted for the longest time after ignition. And, it was shown that total thermal emission was $18{\sim}53MJ/m^2$ for living leaves, $41{\sim}80MJ/m^2$ for branches, and $19{\sim}110MJ/m^2$ for barks, which were quite different by kind of trees. Further, it could be confirmed that the oaks was a kind of tree mostly with high thermal emission by part. Thus, it is determined that its community complex has high thermal emission and large fire load so that it can be a critical clue to understand fire path and a useful clue to forecast flame spread and fire intensity by its classification into the area of greatest fire density.
In this study, we considered the mechanism of the flame spread and the fire investigation for oaks by forest fire. Cone calorimeter and ignition temperature tester were used as the equipments for this study. The temperature range of non-flame ignition was $346{\sim}382^{\circ}C$ for living leaves, $375{\sim}494^{\circ}C$ for branches, and $396{\sim}473^{\circ}C$ for barks, respectively, which showed the difference by kind of trees. Thus, it was confirmed that the green leaves with high moisture content had relatively high risk of non-flame ignition. Also, the time of flaming ignition was 67 sec for living leaves, 203 sec for branches, and 23 sec for barks measured, respectively. Accordingly, it was confirmed that bark part with very low moisture content was flamingly ignited in a shorter time and its flame persisted for the longest time after ignition. And, it was shown that total thermal emission was $18{\sim}53MJ/m^2$ for living leaves, $41{\sim}80MJ/m^2$ for branches, and $19{\sim}110MJ/m^2$ for barks, which were quite different by kind of trees. Further, it could be confirmed that the oaks was a kind of tree mostly with high thermal emission by part. Thus, it is determined that its community complex has high thermal emission and large fire load so that it can be a critical clue to understand fire path and a useful clue to forecast flame spread and fire intensity by its classification into the area of greatest fire density.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.