$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

제2형 당뇨병 모델 마우스에서 ginsenoside Rg1의 항당뇨 효과
Antihyperlipidemic Effect of Ginsenoside Rg1 in Type 2 Diabetic Mice 원문보기

생명과학회지 = Journal of life science, v.21 no.7 = no.135, 2011년, pp.932 - 938  

박재홍 (부산대학교 한의학전문대학원 양생기능의학부) ,  이지연 (부산대학교 한의학전문대학원 양생기능의학부) ,  여지영 (부산대학교 한의학전문대학원 양생기능의학부) ,  남정수 (부산대학교 한의학전문대학원 양생기능의학부) ,  정명호 (부산대학교 한의학전문대학원 양생기능의학부)

초록
AI-Helper 아이콘AI-Helper

Ginsenoside Rg1은 인삼에서 분리한 약물학적인 활성을 가지는 물질이다. 본 연구는 Rg1이 제2형 당뇨병 모델 동물에서 혈당과 지질대사에 유익한 효과를 가지는지를 확인하기 위한 목적으로 수행되었다. 10주령의 db/db 마우스에 Rg1을 10 mg/kg 농도로 15일간 경구투여한 결과 공복혈당이 감소하였고, 포도당 내성이 개선되었다. 특히 혈중 중성지방과 유리지방산이 유의적으로 감소하였고 혈중 HDL-콜레스테롤이 증가되었다. 또한 chimeric GAL4-PPAR${\alpha}$ receptor 활성 프로모터를 활성화시켰고 PPAR${\alpha}$ gene인 CPT-1 (carnitine palmitoyltransferase-1)과 ACO (acyl-CoA oxidase)의 발현을 증가시켰는데 이것으로 Rg1의 지질대사 개선이 PPAR${\alpha}$ 활성에 의한 지방산 산화에 의한 것임을 확인할 수 있었다. 모든 결과를 종합해 볼 때, Rg1은 제2형 당뇨병과 관련된 고혈당증고지혈증에 유용한 효과를 가짐을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

Ginsenoside Rg1 is a pharmacologically active component isolated from ginseng. The goal of this study was to clarify the beneficial effects of Rg1 on glucose and lipid metabolism in diabetic animals (db/db mice). To accomplish this, ten week old db/db mice were administered 10 mg/kg of Rg1 for 15 da...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Accordingly, this study was designed to clarify the possibility of Rg1 as an effective candidate to ameliorate hyperglycemia and hyperlipidemia in a diabetic animal model (db/db mice).
  • One day before the sacrifice, an intraperitoneal glucose tolerance test (IPGTT) was conducted on all of the db/db mice after a 12-h overnight fast. To determine the glucose tolerance, the mice were intraperitoneally injected with glucose (0.
  • The blood glycated hemoglobin (HbA1c) of each sample sacrificed mice was measured using a MicroMatTM II Hemoglobin A1c Test (Bio-Rad Laboratories, Hercules, CA, USA). The plasma insulin and glucagon (Mouse ELISA Kit, ALPCO Diagnostics, Salem, NH, USA) levels were determined using a quantitative sandwich enzyme immunoassay kit.
  • All groups were fed a standard AIN-76 semi-synthetic diet [2,3]. The mice had free access to food and water, and their body weight was measured once every five days throughout the experiment. The diabetic control group was orally administered deionized water and two experimental groups (acarbose, and Rg1) were orally administered acarbose (50 mg/kg BW) or Rg1 (10 mg/kg BW) for 15 days.
  • The diabetic control group was orally administered deionized water and two experimental groups (acarbose, and Rg1) were orally administered acarbose (50 mg/kg BW) or Rg1 (10 mg/kg BW) for 15 days. The mice were then starved for 12 hrs, after which they were anesthetized with ether and their blood samples were taken from the inferior vena cava to measure the plasma biomarkers (HbA1c, insulin, glucagon, etc.). The mice were handled in strict accordance with the Pusan National University guidelines for the care and use of laboratory animals.
  • One day before the sacrifice, an intraperitoneal glucose tolerance test (IPGTT) was conducted on all of the db/db mice after a 12-h overnight fast. To determine the glucose tolerance, the mice were intraperitoneally injected with glucose (0.5 g/kg BW) and the glucose concentrations of blood drawn from the tail vein were determined immediately upon collection at 30, 60, and 120 min after glucose injection using a Glucometer (GlucoDr, Allmedicus, Anyang, Korea).

대상 데이터

  • Twenty one male C57Bl/KsJ-db/db mice (8 weeks old) were obtained from Jackson Laboratory (Bar Harbor, ME, USA). The mice were all individually housed in polycarbonate cages under a 12-h light-dark cycle at, 21-23℃ and 40-60% humidity.

데이터처리

  • Significant difference between two groups was determined using Student’s t-test.
  • The data were evaluated by one-way ANOVA and the differences between means were determined using Tukey’s multiple-range test.

이론/모형

  • In addition, the plasma concentrations of glucose, total cholesterol, triglyceride, and HDL-cholesterol (Asan Diagnostics, Seoul, Korea) were determined using an enzymatic method. The plasma free fatty acids (FFAs) concentrations were determined using an enzymatic colorimetric method (Wako Pure Chemical Industries, Japan). All blood samples obtained were centrifuged at 1,000× g for 15 min at 4℃ for biochemical analysis.
본문요약 정보가 도움이 되었나요?

참고문헌 (29)

  1. Aasum, E., A. D. Hafstad, D. L. Severson, and T. S. Larsen. 2003. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes 52, 434-441. 

  2. American Institute of Nutrition. 1980. Report of Ad Hoc committee on standards for nutritional studies. J. Nutr. 110, 1717-1726. 

  3. American Institute of Nutrition. 1977. Report of the American institute of nutrition ad hoc committee on standards for nutritional studies. J. Nutr. 107, 1340-1348. 

  4. Andallu, B., A. V. Vinay Kumar, and NCh. Varadacharyulu. 2009. Lipid abnormalities in streptozotocin-diabetes: Amelioration by Morus indica L. cv Suguna leaves. Int. J. Diabetes Dev. Ctries. 29, 123-128. 

  5. Anhauser, M. 2003. Pharmacists seek the solution of a shaman. Drug Discov. Today 8, 868-869. 

  6. Atta, Ur R. and K. Zaman. 1989. Medicinal plants with hypoglycemic activity. J. Ethnopharmacol. 26, 1-55. 

  7. Chen, X., X. Bai, Y. Liu, L. Tian, J. Zhou, Q. Zhou, J. Fang, and J. Chenl. 2009. Anti-diabetic effects of water extract and crude polysaccharides from tuberous root of Liriope spicata var. prolifera in mice. J. Ethnopharmacol. 122, 205-209. 

  8. Cheng, Y., L. H. Shen, and J. T. Zhang. 2005. Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta. Pharmacol. Sin. 26, 143-149. 

  9. DeFronzo, R. A. 1999. Pharmacologic therapy for type 2 diabetes mellitus. Ann. Intern. Med. 131, 281-303. 

  10. De Sotillo, D. V. R. and M. Hadley. 2002. Chlorogenic acid modifies plasma and liver concentrations of: cholesterol, triacylglycerol, and minerals in (fa/fa) Zucker rats. J. Nutr. Biochem. 13, 717-726. 

  11. Gaster, B. and I. B. Hirsch. 1998. The effects of improved glycemic control on complications in type 2 diabetes. Arch. Intern. Med. 158, 134-140. 

  12. Hanefeld, M. and T. Temelkova-Kurktschiev. 2002. Control of post-prandial hyperglycemia- an essential part of good diabetes treatment and prevention of cardiovascular complications. Nutr. Metab. Cardiovasc. Dis. 12, 98-107. 

  13. Hou, J. P. 1977. The chemical constituents of ginseng plants. Comp. Med. East West 5, 123-145. 

  14. Jang, Y. J., J. K. Kim, M. S. Lee, I. H. Ham, W. K. Whang, K. H. Kim, and H. J. Kim. 2001. Hypoglycemic and hypolipidemic effects of crude saponin fractions from Panax ginseng and gynostemma pentaphyllum. Yakhak Hoechi 45, 545-556. 

  15. Kim, M. J., K. H. Leem, and H. K. Kim. 2009. Hydrangea dulcis folium preserves b-cell mass in diabetic db/db mice. Food Chem. Toxicol. 47, 1685-1688. 

  16. Kim, S. J., H. D. Yuan, and S. H. Chung. 2010. Ginsenoside Rg1 suppresses hepatic glucose production via AMP-activated protein kinase in HepG2 cells. Biol. Pharm. Bull. 33, 325-328. 

  17. Lee, S. M., H. J. Shon, C. S. Choi, T. M. Hung, B. S. Min, and K. Bae. 2009. Ginsenosides from heat processed ginseng. Chem. Pharm. Bull. (Tokyo) 57, 92-94. 

  18. Liu, G., B. Wang, J. Zhang, H. Jiang, and F. Liu. 2009. Total panax notoginsenosides prevent atherosclerosis in apolipoprotein E-knockout mice: Role of downregulation of CD40 and MMP-9 expression. J. Ethnopharmacol. 126, 350-354. 

  19. Ng, T. B. 2006. Pharmacological activity of sanchi ginseng (Panax notoginseng). J. Pharm. Pharmacol. 58, 1007-1019. 

  20. Nishijo, H., T. Uwano, Y. M. Zhong, and T. Ono. 2004. Proof of the mysterious efficacy of ginseng: basic and clinical trials: effects of red ginseng on learning and memory deficits in an animal model of amnesia. J. Pharmacol. Sci. 95, 145-152. 

  21. Rosenbloom, A. L., J. R. Joe, R. S. Young, and W. E. Winter. 1999. Emerging epidemic of type 2 diabetes in youth. Diabetes Care 22, 345-354. 

  22. Sugimoto, S., S. Nakamura, H. Matsuda, N. Kitagawa, and M. Yoshikawa. 2009. Chemical constituents from seeds of Panax ginseng: structure of new dammarane-type triterpene ketone, panaxadione, and HPLC comparisons of seeds and flesh. Chem. Pharm. Bull. 57, 283-287. 

  23. Tawab, M. A., U. Bahr, M. Karas, M. Wurglics, and M. Schubert-Zsilavecz. 2003. Degradation of ginsenosides in humans after oral administration. Drug Metab. Dispos. 31, 1065-1071. 

  24. Tohda, C., N. Matsumoto, K. Zou, M. R. Meselhy, and K. Komatsu. 2004. Abeta (25-35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, A metabolite of protopanaxadiol-type saponins. Neuropsychopharmacology 29, 860-868. 

  25. Van Gaal, L. F. and I. H. De Leeuw. 2003. Rationale and options for combination therapy in the treatment of type 2 diabetes. Diabetologia 46, 44-50. 

  26. Verreth, W., J. Ganame, A. Mertens, H. Bernar, M. C. Herregods, and P. Holvoet. 2006. Peroxisome proliferator- activated receptor-alpha,gamma-agonist improves insulin sensitivity and prevents loss of left ventricular function in obese dyslipidemic mice. Arterioscler. Thromb. Vasc. Biol. 26, 922-928. 

  27. Xie, J. T., H. H. Aung, J. A. Wu, A. S. Attele, and C. S. Yuan. 2002. Effects of American ginseng berry extract on blood glucose levels in ob/ob mice. Am. J. Chin. Med. 30, 187-194. 

  28. Xie, J. T., Y. P. Zhou, L. Dey, A. S. Attele, J. A. Wu, M. Gu, K. S. Polonsky, and C. S. Yuan. 2002. Ginseng berry reduces blood glucose and body weight in db/db mice. Phytomedicine 9, 254-258. 

  29. Yue, P. Y., N. K. Mak, Y. K. Cheng, K. W. Leung, T. B. Ng, D. T. Fan, H. W. Yeung, and R. N. Wong. 2007. Pharmacogenomics and the Yin/Yang actions of ginseng: anti-tumor, angiomodulating and steroid-like activities of ginsenosides. Chin. Med. 2, 6. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로