$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

우울장애의 신경생물학적 기전으로서 세포 내 신호전달계의 역할
The Role of Intracellular Signaling Pathways in the Neurobiology of the Depressive Disorder 원문보기

생물정신의학 = Korean journal of biological psychiatry, v.18 no.4, 2011년, pp.189 - 196  

김세현 (서울대학교병원 신경정신과)

Abstract AI-Helper 아이콘AI-Helper

Major depressive disorder is characterized by cellular and molecular alterations resulting in the depressive behavioral phenotypes. Preclinical and clinical studies have demonstrated the deficits, including cell atrophy and loss, in limbic and cortical regions of patients with depression, which is r...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 종설에서는 우울장애 발병 및 치료작용의 신경생물학적 기전으로서 세포 내 신호전달계의 역할에 대해서 알아볼 것이다. Cyclic adenosin monophos-phate(이하 cAMP), mitogen-activated protein kinase(이하 MAPK), Akt-glycogen synthase kinase-3(이하 GSK-3) 신호전달계에 대해서 알아보고, 본 신호전달계의 상호 조절을 통해 활성이 조절되며 항우울작용 유발에 있어서 최근 그 중요성이 부각되고 있는 단백질 합성 신호전달계(protein transla-tion signal pathways)의 역할에 대해서 기술할 것이다. 우울장애의 발병 및 치료 기전 관련 신호전달계 기전의 이해는 새로운 단계의 신약 개발에 대한 이해를 증진시키는 계기를 제공할 것이다.
  • 즉, 세포 내 신호전달계는 신경전달물질 수용체, 신경영양 인자 수용체, 신경 호르몬, 환경의 변화 등에 반응하여 기능성 변화를 유발하는 구동 장치(processor)의 역할을 한다. 본 종설에서는 우울장애 발병 및 치료작용의 신경생물학적 기전으로서 세포 내 신호전달계의 역할에 대해서 알아볼 것이다. Cyclic adenosin monophos-phate(이하 cAMP), mitogen-activated protein kinase(이하 MAPK), Akt-glycogen synthase kinase-3(이하 GSK-3) 신호전달계에 대해서 알아보고, 본 신호전달계의 상호 조절을 통해 활성이 조절되며 항우울작용 유발에 있어서 최근 그 중요성이 부각되고 있는 단백질 합성 신호전달계(protein transla-tion signal pathways)의 역할에 대해서 기술할 것이다.
  • 더욱이 DUSP1-/- mice는 스트레스 반응에 있어서 높은 회복력을 보이는 것으로 확인되었다. 이는 ERK1/2 특이적 탈인산화 효소의 하나인 DUSP1이 우울장애 발병에서 주요 역할을 하며,또한 새로운 항우울제 표적이 될 가능성을 시사하는 바이다.68)
  • 최근 ERK1/2의 탈인산화 효소인 DUSP1가 우울장애 발병 및 치료 작용에서 주요 역할을 한다고 보고되었다. 이와 같은 연구결과들은 우울장애의 분자 기전에서 M- APK 신호전달계의 중요성을 시사하는 바이다

가설 설정

  • 72) 동물실험에서 스트레스를 통한 우울 행동 유발에 있어서 ventral tegmental area에서의 Akt 활성화 감소 및 항우울제 처치에 의한 회복이 확인되었으며, Akt가 만성적 스트레스에 의한 우울 행동에 있어서 주요 역할을 하는 것으로 시사되었다.73) Forkhead box, class O(이하 FoxO) 전사인자는 Akt에 의한 인산화에 의해 활성이 조절된다. D-fenfluramine 및 imipramine을 통한 세로토닌 신경전달 증강이 Akt를 통해 FoxO1 및 FoxO3a의 인산화 수준을 증가시키며, FoxO1 및 FoxO3a의 뇌 내 선택적 제거가 불안 및 우울 관련 행동 변화를 유발함이 보고되었다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
세포 내 신호전달계의 역할은 무엇인가? 세포 내 신호전달계는 다양한 외부 자극에 반응하여 유전자 발현, 단백질 합성, 에너지 대사 등을 조절하여, 세포 수준에서 활성도, 운명, 구조 변화 등을 유발하여 궁극적으로 뇌 및 행동 수준에서의 변화를 유발한다. 즉, 세포 내 신호전달계는 신경전달물질 수용체, 신경영양 인자 수용체, 신경 호르몬, 환경의 변화 등에 반응하여 기능성 변화를 유발하는 구동 장치(processor)의 역할을 한다. 본 종설에서는 우울장애 발병 및 치료작용의 신경생물학적 기전으로서 세포 내 신호전달계의 역할에 대해서 알아볼 것이다.
현존하는 주요 항우울제의 표적은 무엇인가? 현존하는 주요 항우울제는 세로토닌 및 노르에피네프린 시스템을 포함한 모노아민 신경전달물질 체계를 일차 표적으로 한다.1) 시냅스 연접 부위에서 재흡수 억제를 통해 세로토닌 및 노르에피네프린을 증가시키는 약물들이 일차적으로 개발되었으며, 이후 도파민, 아세틸콜린 시스템에 영향을 주는 약물들의 개발로 확장되었다.
우울장애 환자 및 스트레스를 가한 동물의 뇌에 항우울제를 처방했을 때 어떤 효과를 거둘 수 있는가? 사후 뇌 및 뇌영상 연구를 통해 우울장애 환자 뇌 변연계(limbic system) 및 피질(cor-tex)에서 신경세포 수상돌기(dendrites) 및 신경교세(glial cell)의 크기 및 수의 감소, 뇌혈류 및 당대사 감소 등이 관찰되었다.6-8) 반대로 항우울제 처치는 뇌 내 신경세포신생(neurogen-esis), 신경교세포의 증식, 뇌혈관내피세포의 증식, 신경세포 수상돌기 증가 등을 유발하며,7)9)10) 스트레스를 포함한 다양한 자극에 의해 유발된 동물의 뇌 위축 및 신경세포신생의 억제를 회복시켰다.11-14) 이와 관련하여 항우울제의 다양한 성장/신경영양 인자(growth/neurotrophic factors)의 발현 변화 유발과 함께 해당 인자들의 항우울 작용들이 알려졌으며,15) 해당 인자들의 작용 기전으로서 관련 신호전달계에 대한 연구가 활발히 수행되고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (94)

  1. Wong ML, Licinio J. From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Discov 2004;3:136-151. 

  2. Diazgranados N, Ibrahim L, Brutsche NE, Newberg A, Kronstein P, Khalife S, et al. A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry 2010;67:793-802. 

  3. DiazGranados N, Ibrahim LA, Brutsche NE, Ameli R, Henter ID, Luckenbaugh DA, et al. Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant major depressive disorder. J Clin Psychiatry 2010;71:1605-1611. 

  4. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010;329:959-964. 

  5. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 2011;475:91-95. doi: 10.1038/nature10130. 

  6. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006;59:1116-1127. 

  7. Manji HK, Duman RS. Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol Bull 2001;35:5-49. 

  8. Manji HK, Drevets WC, Charney DS. The cellular neurobiology of depression. Nat Med 2001;7:541-547. 

  9. Sheline YI, Gado MH, Kraemer HC. Untreated depression and hippocampal volume loss. Am J Psychiatry 2003;160:1516-1518. 

  10. Vermetten E, Vythilingam M, Southwick SM, Charney DS, Bremner JD. Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol Psychiatry 2003;54:693-702. 

  11. Czeh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M, et al. Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci U S A 2001;98: 12796-12801. 

  12. Madsen TM, Treschow A, Bengzon J, Bolwig TG, Lindvall O, Tingstrom A. Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 2000;47:1043-1049. 

  13. Manev H, Uz T, Smalheiser NR, Manev R. Antidepressants alter cell proliferation in the adult brain in vivo and in neural cultures in vitro. Eur J Pharmacol 2001;411:67-70. 

  14. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003;301:805-809. 

  15. Schmidt HD, Banasr M, Duman RS. Future Antidepressant Targets: Neurotrophic Factors and Related Signaling Cascades. Drug Discov Today Ther Strateg 2008;5:151-156. 

  16. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 2009;62:479- 493. 

  17. Bessa JM, Ferreira D, Melo I, Marques F, Cerqueira JJ, Palha JA, et al. The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry 2009;14:764-773, 739. 

  18. Adayev T, Ranasinghe B, Banerjee P. Transmembrane signaling in the brain by serotonin, a key regulator of physiology and emotion. Biosci Rep 2005;25:363-385. 

  19. Zheng M, Zhu W, Han Q, Xiao RP. Emerging concepts and therapeutic implications of beta-adrenergic receptor subtype signaling. Pharmacol Ther 2005;108:257-268. 

  20. Aantaa R, Marjamaki A, Scheinin M. Molecular pharmacology of alpha 2-adrenoceptor subtypes. Ann Med 1995;27:439-449. 

  21. Kamenetsky M, Middelhaufe S, Bank EM, Levin LR, Buck J, Steegborn C. Molecular details of cAMP generation in mammalian cells: a tale of two systems. J Mol Biol 2006;362:623-639. 

  22. Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased temporal cortex CREB concentrations and antidepressant treatment in major depression. Lancet 1998;352:1754-1755. 

  23. Dowlatshahi D, MacQueen GM, Wang JF, Reiach JS, Young LT. G Protein-coupled cyclic AMP signaling in postmortem brain of subjects with mood disorders: effects of diagnosis, suicide, and treatment at the time of death. J Neurochem 1999;73:1121-1126. 

  24. Cowburn RF, Marcusson JO, Eriksson A, Wiehager B, O'Neill C. Adenylyl cyclase activity and G-protein subunit levels in postmortem frontal cortex of suicide victims. Brain Res 1994;633:297-304. 

  25. Manier DH, Eiring A, Shelton RC, Sulser F. Beta-adrenoceptorlinked protein kinase A (PKA) activity in human fibroblasts from normal subjects and from patients with major depression. Neuropsychopharmacology 1996;15:555-561. 

  26. Manier DH, Shelton RC, Ellis TC, Peterson CS, Eiring A, Sulser F. Human fibroblasts as a relevant model to study signal transduction in affective disorders. J Affect Disord 2000;61:51-58. 

  27. Perez J, Tinelli D, Brunello N, Racagni G. cAMP-dependent phosphorylation of soluble and crude microtubule fractions of rat cerebral cortex after prolonged desmethylimipramine treatment. Eur J Pharmacol 1989;172:305-316. 

  28. Nestler EJ, Terwilliger RZ, Duman RS. Chronic antidepressant administration alters the subcellular distribution of cyclic AMP-dependent protein kinase in rat frontal cortex. J Neurochem 1989;53:1644- 1647. 

  29. Nibuya M, Nestler EJ, Duman RS. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 1996;16:2365-2372. 

  30. Fujimaki K, Morinobu S, Duman RS. Administration of a cAMP phosphodiesterase 4 inhibitor enhances antidepressant-induction of BDNF mRNA in rat hippocampus. Neuropsychopharmacology 2000; 22:42-51. 

  31. Jeon SH, Seong YS, Juhnn YS, Kang UG, Ha KS, Kim YS, et al. Electroconvulsive shock increases the phosphorylation of cyclic AMP response element binding protein at Ser-133 in rat hippocampus but not in cerebellum. Neuropharmacology 1997;36:411-414. 

  32. Thome J, Sakai N, Shin K, Steffen C, Zhang YJ, Impey S, et al. cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci 2000;20:4030- 4036. 

  33. Deogracias R, Espliguero G, Iglesias T, Rodriguez-Pena A. Expression of the neurotrophin receptor trkB is regulated by the cAMP/CREB pathway in neurons. Mol Cell Neurosci 2004;26:470-480. 

  34. Fukuchi M, Tabuchi A, Tsuda M. Transcriptional regulation of neuronal genes and its effect on neural functions: cumulative mRNA expression of PACAP and BDNF genes controlled by calcium and cAMP signals in neurons. J Pharmacol Sci 2005;98:212-218. 

  35. McCauslin CS, Heath V, Colangelo AM, Malik R, Lee S, Mallei A, et al. CAAT/enhancer-binding protein delta and cAMP-response element- binding protein mediate inducible expression of the nerve growth factor gene in the central nervous system. J Biol Chem 2006;281: 17681-17688. 

  36. Chen AC, Shirayama Y, Shin KH, Neve RL, Duman RS. Expression of the cAMP response element binding protein (CREB) in hippocampus produces an antidepressant effect. Biol Psychiatry 2001;49: 753-762. 

  37. Newton SS, Thome J, Wallace TL, Shirayama Y, Schlesinger L, Sakai N, et al. Inhibition of cAMP response element-binding protein or dynorphin in the nucleus accumbens produces an antidepressantlike effect. J Neurosci 2002;22:10883-10890. 

  38. Pliakas AM, Carlson RR, Neve RL, Konradi C, Nestler EJ, Carlezon WA Jr. Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element- binding protein expression in nucleus accumbens. J Neurosci 2001;21:7397-7403. 

  39. Tanis KQ, Duman RS, Newton SS. CREB binding and activity in brain: regional specificity and induction by electroconvulsive seizure. Biol Psychiatry 2008;63:710-720. 

  40. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002;298: 1911-1912. 

  41. Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 2004;14:311-317. 

  42. Wu GY, Deisseroth K, Tsien RW. Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology. Nat Neurosci 2001;4:151-158. 

  43. Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 2004;68:320-344. 

  44. Dwivedi Y, Rizavi HS, Conley RR, Pandey GN. ERK MAP kinase signaling in post-mortem brain of suicide subjects: differential regulation of upstream Raf kinases Raf-1 and B-Raf. Mol Psychiatry 2006;11:86-98. 

  45. Dwivedi Y, Rizavi HS, Roberts RC, Conley RC, Tamminga CA, Pandey GN. Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J Neurochem 2001;77:916-928. 

  46. Karege F, Vaudan G, Schwald M, Perroud N, La Harpe R. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res 2005;136:29-37. 

  47. Mercier G, Lennon AM, Renouf B, Dessouroux A, Ramauge M, Courtin F, et al. MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J Mol Neurosci 2004;24:207-216. 

  48. Kodama M, Russell DS, Duman RS. Electroconvulsive seizures increase the expression of MAP kinase phosphatases in limbic regions of rat brain. Neuropsychopharmacology 2005;30:360-371. 

  49. Bhat RV, Engber TM, Finn JP, Koury EJ, Contreras PC, Miller MS, et al. Region-specific targets of p42/p44MAPK signaling in rat brain. J Neurochem 1998;70:558-571. 

  50. Kang UG, Koo YJ, Jeon WJ, Park DB, Juhnn YS, Park JB, et al. Activation of extracellular signal-regulated kinase signaling by chronic electroconvulsive shock in the rat frontal cortex. Psychiatry Res 2006; 145:75-78. 

  51. Gourley SL, Wu FJ, Kiraly DD, Ploski JE, Kedves AT, Duman RS, et al. Regionally specific regulation of ERK MAP kinase in a model of antidepressant-sensitive chronic depression. Biol Psychiatry 2008; 63:353-359. 

  52. Duman CH, Schlesinger L, Kodama M, Russell DS, Duman RS. A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol Psychiatry 2007;61:661-670. 

  53. Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L, et al. The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 2003;23:7311-7316. 

  54. Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 2003;60:804-515. 

  55. Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 2002;109:143-148. 

  56. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 2003;54:70-75. 

  57. Evans SJ, Choudary PV, Neal CR, Li JZ, Vawter MP, Tomita H, et al. Dysregulation of the fibroblast growth factor system in major depression. Proc Natl Acad Sci U S A 2004;101:15506-15511. 

  58. Ueyama T, Kawai Y, Nemoto K, Sekimoto M, Tone S, Senba E. Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. Neurosci Res 1997;28:103-110. 

  59. Heine VM, Zareno J, Maslam S, Joels M, Lucassen PJ. Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression. Eur J Neurosci 2005; 21:1304-1314. 

  60. Gonul AS, Akdeniz F, Taneli F, Donat O, Eker C, Vahip S. Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci 2005;255:381- 386. 

  61. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001;50:260-265. 

  62. Aydemir O, Deveci A, Taneli F. The effect of chronic antidepressant treatment on serum brain-derived neurotrophic factor levels in depressed patients: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry 2005;29:261-265. 

  63. Gervasoni N, Aubry JM, Bondolfi G, Osiek C, Schwald M, Bertschy G, et al. Partial normalization of serum brain-derived neurotrophic factor in remitted patients after a major depressive episode. Neuropsychobiology 2005;51:234-238. 

  64. Schmidt HD, Duman RS. Peripheral BDNF produces antidepressant- like effects in cellular and behavioral models. Neuropsychopharmacology 2010;35:2378-2391. 

  65. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brainderived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002;22:3251-3261. 

  66. Murphy LO, Blenis J. MAPK signal specificity: the right place at the right time. Trends Biochem Sci 2006;31:268-275. 

  67. Jeon SH, Yoo BH, Kang UK, Ahn YM, Bae CD, Park JB, et al. MKP- 1 induced in rat brain after electroconvulsive shock is independent of regulation of 42- and 44-kDa MAPK activity. Biochem Biophys Res Commun 1998;249:692-696. 

  68. Duric V, Banasr M, Licznerski P, Schmidt HD, Stockmeier CA, Simen AA, et al. A negative regulator of MAP kinase causes depressive behavior. Nat Med 2010;16:1328-1332. 

  69. Fayard E, Tintignac LA, Baudry A, Hemmings BA. Protein kinase B/Akt at a glance. J Cell Sci 2005;118:5675-5678. 

  70. Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG. An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 2005; 122:261-273. 

  71. Beaulieu JM, Sotnikova TD, Yao WD, Kockeritz L, Woodgett JR, Gainetdinov RR, et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci U S A 2004;101:5099-5104. 

  72. Kang UG, Roh MS, Jung JR, Shin SY, Lee YH, Park JB, et al. Activation of protein kinase B (Akt) signaling after electroconvulsive shock in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2004;28:41-44. 

  73. Krishnan V, Han MH, Mazei-Robison M, Iniguez SD, Ables JL, Vialou V, et al. AKT signaling within the ventral tegmental area regulates cellular and behavioral responses to stressful stimuli. Biol Psychiatry 2008;64:691-700. 

  74. Polter A, Yang S, Zmijewska AA, van Groen T, Paik JH, Depinho RA, et al. Forkhead box, class O transcription factors in brain: regulation and behavioral manifestation. Biol Psychiatry 2009;65:150-159. 

  75. Yu HS, Kim SH, Park HG, Kim YS, Ahn YM. Activation of Akt signaling in rat brain by intracerebroventricular injection of ouabain: a rat model for mania. Prog Neuropsychopharmacol Biol Psychiatry 2010;34:888-894. 

  76. Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 2001;65:391-426. 

  77. Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A 1996;93:8455-8459. 

  78. Stambolic V, Ruel L, Woodgett JR. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 1996;6:1664-1668. 

  79. Roh MS, Eom TY, Zmijewska AA, De Sarno P, Roth KA, Jope RS. Hypoxia activates glycogen synthase kinase-3 in mouse brain in vivo: protection by mood stabilizers and imipramine. Biol Psychiatry 2005;57:278-286. 

  80. Li X, Zhu W, Roh MS, Friedman AB, Rosborough K, Jope RS. In vivo regulation of glycogen synthase kinase-3beta (GSK3beta) by serotonergic activity in mouse brain. Neuropsychopharmacology 2004;29:1426-1431. 

  81. Madsen TM, Newton SS, Eaton ME, Russell DS, Duman RS. Chronic electroconvulsive seizure up-regulates beta-catenin expression in rat hippocampus: role in adult neurogenesis. Biol Psychiatry 2003;54: 1006-1014. 

  82. Roh MS, Kang UG, Shin SY, Lee YH, Jung HY, Juhnn YS, et al. Biphasic changes in the Ser-9 phosphorylation of glycogen synthase kinase-3beta after electroconvulsive shock in the rat brain. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:1-5. 

  83. Okamoto H, Voleti B, Banasr M, Sarhan M, Duric V, Girgenti MJ, et al. Wnt2 expression and signaling is increased by different classes of antidepressant treatments. Biol Psychiatry 2010;68:521-527. 

  84. Kaidanovich-Beilin O, Milman A, Weizman A, Pick CG, Eldar-Finkelman H. Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on beta-catenin in mouse hippocampus. Biol Psychiatry 2004;55:781-784. 

  85. Gould TD, Einat H, Bhat R, Manji HK. AR-A014418, a selective GSK- 3 inhibitor, produces antidepressant-like effects in the forced swim test. Int J Neuropsychopharmacol 2004;7:387-390. 

  86. Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N. Translational control of long-lasting synaptic plasticity and memory. Neuron 2009; 61:10-26. 

  87. Proud CG. Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 2007;403: 217-234. 

  88. Lehman JA, Gomez-Cambronero J. Molecular crosstalk between p70S6k and MAPK cell signaling pathways. Biochem Biophys Res Commun 2002;293:463-469. 

  89. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J, et al. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem 2007;282:14056-14064. 

  90. Farber NB. The NMDA receptor hypofunction model of psychosis. Ann N Y Acad Sci 2003;1003:119-130. 

  91. Thomas DM, Kuhn DM. MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity. Brain Res 2005;1050:190-198. 

  92. Papp M, Moryl E. Antidepressant activity of non-competitive and competitive NMDA receptor antagonists in a chronic mild stress model of depression. Eur J Pharmacol 1994;263:1-7. 

  93. Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, et al. Glutamate Nmethyl- D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 2011;69:754-761. 

  94. Jernigan CS, Goswami DB, Austin MC, Iyo AH, Chandran A, Stockmeier CA, et al. The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1774-1779. 

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로