$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

중독 정신 병리의 이해 : 뇌영상 연구를 중심으로
Neurobiology of Addiction Based on Neuroimaging Evidence 원문보기

생물정신의학 = Korean journal of biological psychiatry, v.18 no.2, 2011년, pp.61 - 71  

민정아 (가톨릭대학교 의과대학 서울성모병원 정신과학교실) ,  김대진 (가톨릭대학교 의과대학 서울성모병원 정신과학교실)

Abstract AI-Helper 아이콘AI-Helper

Substance addiction is a chronically relapsing disorder that has been characterized by a vicious cycle composed of intoxication, craving/anticipation, withdrawal, and response inhibition/bingeing. Here we summarize the findings from neuroimaging studies in addiction according to these behavioral com...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 신경전달 물질 기능에 대한 평가는 방사선 동위원소를 이용하여 도파민이나 도파민 수용체, GABA 체계의 연구 등이 포함된다. 물질중독의 신경생물학적 측면에 대한 통합적인 이해를 위해서는 유전적, 후성적, 분자적 수준에서의 논의도 필요하겠지만, 본 종설에서는 뇌영상 연구들, 특히 앞서 소개한 기능적 뇌영상 연구 결과들을 바탕으로 하여 중독에 관여하는 뇌의 영역들과 그들간의 상호적 관계를 반영하는 신경 회로들을 중심으로 중독정신병리 대해서 고찰하고자 한다.

가설 설정

  • 물질의 보상 효과의 행동적 결과 및 뇌의 활성화 모두가 기대감이 높을수록 더 강하게 나타난다고 보고된 바 있다.24) 기대감의 배제를 위해서는 이중맹검 연구 설계 가 도움이 될 것이다. 마지막으로, 물질의존 환자들에게서도 뇌의 적응적인 변화가 일어나는 것으로 알려져 있어, 개인의 물질의존의 심각도와 유병 기간 등의 임상적 변인에 따라 물질의 급성 중독효과에 따른 활성화의 부위와 정도가 다를 가능성에 대한 고려와 연구가 필요하겠다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
물질중독은 어떤 특징을 갖는가? 물질중독(substance addiction) 혹은 물질의존(substance dependence)은 만성적으로 재발하는 질병으로 1) 물 질을 구하고 취하는 것에 대한 강박적 충동(compulsion), 2) 제한된 사용에 대한 통제 상실, 3) 물질에 대한 접근이 금지 되었을 때 나타나는 불안, 우울, 짜증 등의 부정적인 감정상 태의 특징을 갖는다.1) 물질중독은 상당한 공중보건의 문제 를 야기하지만, 아직까지 치료의 효과는 제한적이다.
물질중독에서의 기능적 뇌영상 연구는 어떻게 구분할 수 있는가? 동물실험을 통해 물질중독의 신경생물학적 기전에 대한 많 은 근거를 얻을 수 있었지만, 사람을 대상으로 한 연구들에 서는 다양한 기법의 뇌영상 연구가 질환의 이해에 기여해왔 다. 물질중독에서의 기능적 뇌영상 연구들은 신경 혹은 뇌 영역 활성을 평가하는 것과 신경전달물질을 평가하는 것으로 크게 구분해볼 수 있다.3) 전자의 경우에는 신경세포의 당 대 사를 비롯한 다양한 생물학적인 변화를 측정할 수 있는 [fluorine-18 fluorodeoxyglucose-양전자방출단층촬영(positron emission tomography, 이하 PET)과 뇌혈류량을 측 정하는 단일양자방출전산화단층촬영(single positron emission computed tomography, 이하 SPECT), 혈중 산소혈색소의 수준을 측정하는 기능적자기공명영상(functional magnetic resonance imaging, 이하 fMRI) 등이 주로 사 용된다.
신경 혹은 뇌 영역 활성을 평가하는 경우에는 어떤 것이 주로 사용되는가? 물질중독에서의 기능적 뇌영상 연구들은 신경 혹은 뇌 영역 활성을 평가하는 것과 신경전달물질을 평가하는 것으로 크게 구분해볼 수 있다.3) 전자의 경우에는 신경세포의 당 대 사를 비롯한 다양한 생물학적인 변화를 측정할 수 있는 [fluorine-18 fluorodeoxyglucose-양전자방출단층촬영(positron emission tomography, 이하 PET)과 뇌혈류량을 측 정하는 단일양자방출전산화단층촬영(single positron emission computed tomography, 이하 SPECT), 혈중 산소혈색소의 수준을 측정하는 기능적자기공명영상(functional magnetic resonance imaging, 이하 fMRI) 등이 주로 사 용된다. 또한, 뇌 영역의 활성을 휴식기에 측정할 수도 있지 만, 단서(cue), 물질 혹은 유사 물질을 제공한 뒤에 측정을 하거나 혹은 다양한 과제를 준 상태에서의 활성을 관찰하기 도 하는 등의 조작적 실험상황을 접목하기도 한다. 신경전달 물질 기능에 대한 평가는 방사선 동위원소를 이용하여 도파 민이나 도파민 수용체, GABA 체계의 연구 등이 포함된다.
질의응답 정보가 도움이 되었나요?

참고문헌 (97)

  1. Koob GF, Le Moal M. Drug abuse: hedonic homeostatic dysregulation. Science 1997;278:52-58. 

  2. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology 2010;35:217-238. 

  3. Daglish MR, Nutt DJ. Brain imaging studies in human addicts. Eur Neuropsychopharmacol 2003;13:453-458. 

  4. Blum K, Braverman ER, Holder JM, Lubar JF, Monastra VJ, Miller D, et al. Reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J Psychoactive Drugs 2000;32 Suppl:i-iv, 1-112. 

  5. Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 2002;159:1642-1652. 

  6. Dom G, Sabbe B, Hulstijn W, van den Brink W. Substance use disorders and the orbitofrontal cortex: systematic review of behavioural decision-making and neuroimaging studies. Br J Psychiatry 2005; 187:209-220. 

  7. Nutt DJ. Addiction: brain mechanisms and their treatment implications. Lancet 1996;347:31-36. 

  8. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F. Quantification of Behavior Sackler Colloquium: Addiction: Beyond dopamine reward circuitry. Proc Natl Acad Sci U S A 2011. 

  9. Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Hitzemann R, et al. Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 1997;386:830-833. 

  10. Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, et al. Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 2004;47 Suppl 1:227-241. 

  11. Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Ding YS, Logan J, et al. Relationship between psychostimulant-induced "high" and dopamine transporter occupancy. Proc Natl Acad Sci U S A 1996;93: 10388-10392. 

  12. Volkow ND, Fowler JS, Wang GJ. Imaging studies on the role of dopamine in cocaine reinforcement and addiction in humans. J Psychopharmacol 1999;13:337-345. 

  13. London ED, Cascella NG, Wong DF, Phillips RL, Dannals RF, Links JM, et al. Cocaine-induced reduction of glucose utilization in human brain. A study using positron emission tomography and [fluorine 18] -fluorodeoxyglucose. Arch Gen Psychiatry 1990;47:567-574. 

  14. London ED, Broussolle EP, Links JM, Wong DF, Cascella NG, Dannals RF, et al. Morphine-induced metabolic changes in human brain. Studies with positron emission tomography and [fluorine 18]fluorodeoxyglucose. Arch Gen Psychiatry 1990;47:73-81. 

  15. Volkow ND, Wang GJ, Fowler JS, Hitzemann R, Angrist B, Gatley SJ, et al. Association of methylphenidate-induced craving with changes in right striato-orbitofrontal metabolism in cocaine abusers: implications in addiction. Am J Psychiatry 1999;156:19-26. 

  16. Volkow ND, Gillespie H, Mullani N, Tancredi L, Grant C, Valentine A, et al. Brain glucose metabolism in chronic marijuana users at baseline and during marijuana intoxication. Psychiatry Res 1996;67: 29-38. 

  17. Nakamura H, Tanaka A, Nomoto Y, Ueno Y, Nakayama Y. Activation of fronto-limbic system in the human brain by cigarette smoking: evaluated by a CBF measurement. Keio J Med 2000;49 Suppl 1: A122-A124. 

  18. Mathew RJ, Wilson WH, Humphreys DF, Lowe JV, Wiethe KE. Regional cerebral blood flow after marijuana smoking. J Cereb Blood Flow Metab 1992;12:750-758. 

  19. Volkow ND, Mullani N, Gould L, Adler SS, Guynn RW, Overall JE, et al. Effects of acute alcohol intoxication on cerebral blood flow measured with PET. Psychiatry Res 1988;24:201-209. 

  20. Tiihonen J, Kuikka J, Hakola P, Paanila J, Airaksinen J, Eronen M, et al. Acute ethanol-induced changes in cerebral blood flow. Am J Psychiatry 1994;151:1505-1508. 

  21. Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, et al. Acute effects of cocaine on human brain activity and emotion. Neuron 1997;19:591-611. 

  22. Stein EA, Pankiewicz J, Harsch HH, Cho JK, Fuller SA, Hoffmann RG, et al. Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am J Psychiatry 1998;155:1009-1015. 

  23. Wallace EA, Wisniewski G, Zubal G, vanDyck CH, Pfau SE, Smith EO, et al. Acute cocaine effects on absolute cerebral blood flow. Psychopharmacology (Berl) 1996;128:17-20. 

  24. Volkow ND, Wang GJ, Ma Y, Fowler JS, Zhu W, Maynard L, et al. Expectation enhances the regional brain metabolic and the reinforcing effects of stimulants in cocaine abusers. J Neurosci 2003;23:11461-11468. 

  25. Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 2006;29:565-598. 

  26. Grant S, London ED, Newlin DB, Villemagne VL, Liu X, Contoreggi C, et al. Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci USA 1996;93:12040-12045. 

  27. Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O'Brien CP. Limbic activation during cue-induced cocaine craving. Am J Psychiatry 1999;156:11-18. 

  28. Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L, Ross TJ, et al. Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 2000;157:1789-1798. 

  29. Daglish MR, Weinstein A, Malizia AL, Wilson S, Melichar JK, Britten S, et al. Changes in regional cerebral blood flow elicited by craving memories in abstinent opiate-dependent subjects. Am J Psychiatry 2001;158:1680-1686. 

  30. Di Ciano P, Everitt BJ. Dissociable effects of antagonism of NMDA and AMPA/KA receptors in the nucleus accumbens core and shell on cocaine-seeking behavior. Neuropsychopharmacology 2001;25: 341-360. 

  31. Kelley AE. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 2004;27:765-776. 

  32. Robinson TE, Berridge KC. The neural basis of drug craving: an incentive- sensitization theory of addiction. Brain Res Brain Res Rev 1993;18:247-291. 

  33. Bush G, Vogt BA, Holmes J, Dale AM, Greve D, Jenike MA, et al. Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc Natl Acad Sci U S A 2002;99:523-528. 

  34. Everitt BJ, Dickinson A, Robbins TW. The neuropsychological basis of addictive behaviour. Brain Res Brain Res Rev 2001;36:129-138. 

  35. Wang GJ, Volkow ND, Fowler JS, Cervany P, Hitzemann RJ, Pappas NR, et al. Regional brain metabolic activation during craving elicited by recall of previous drug experiences. Life Sci 1999;64:775-784. 

  36. Volkow ND, Fowler JS, Wolf AP, Hitzemann R, Dewey S, Bendriem B, et al. Changes in brain glucose metabolism in cocaine dependence and withdrawal. Am J Psychiatry 1991;148:621-626. 

  37. Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, et al. Dissociating pain from its anticipation in the human brain. Science 1999;284:1979-1981. 

  38. Chua P, Krams M, Toni I, Passingham R, Dolan R. A functional anatomy of anticipatory anxiety. Neuroimage 1999;9:563-571. 

  39. Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 2005;162:1403-1413. 

  40. Cornish JL, Duffy P, Kalivas PW. A role for nucleus accumbens glutamate transmission in the relapse to cocaine-seeking behavior. Neuroscience 1999;93:1359-1367. 

  41. Sinha R. The role of stress in addiction relapse. Curr Psychiatry Rep 2007;9:388-395. 

  42. Littleton J. Can craving be modeled in animals? The relapse prevention perspective. Addiction 2000;95 Suppl 2:S83-S90. 

  43. Heinz A, LOber S, Georgi A, Wrase J, Hermann D, Rey ER, et al. Reward craving and withdrawal relief craving: assessment of different motivational pathways to alcohol intake. Alcohol Alcohol 2003;38: 35-39. 

  44. Hutcheson DM, Everitt BJ, Robbins TW, Dickinson A. The role of withdrawal in heroin addiction: enhances reward or promotes avoidance? Nat Neurosci 2001;4:943-947. 

  45. Volkow ND, Wang GJ, Fowler JS, Hitzemann R, Gatley SJ, Dewey SS, et al. Enhanced sensitivity to benzodiazepines in active cocaineabusing subjects: a PET study. Am J Psychiatry 1998;155:200-206. 

  46. Gorelick DA, Kim YK, Bencherif B, Boyd SJ, Nelson R, Copersino M, et al. Imaging brain mu-opioid receptors in abstinent cocaine users: time course and relation to cocaine craving. Biol Psychiatry 2005; 57:1573-1582. 

  47. Volkow ND, Hitzemann R, Wang GJ, Fowler JS, Wolf AP, Dewey SL, et al. Long-term frontal brain metabolic changes in cocaine abusers. Synapse 1992;11:184-190. 

  48. Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Jayne M, et al. Profound decreases in dopamine release in striatum in detoxified alcoholics: possible orbitofrontal involvement. J Neurosci 2007;27: 12700-12706. 

  49. Martinez D, Gil R, Slifstein M, Hwang DR, Huang Y, Perez A, et al. Alcohol dependence is associated with blunted dopamine transmission in the ventral striatum. Biol Psychiatry 2005;58:779-786. 

  50. Martinez D, Broft A, Foltin RW, Slifstein M, Hwang DR, Huang Y, et al. Cocaine dependence and d2 receptor availability in the functional subdivisions of the striatum: relationship with cocaine-seeking behavior. Neuropsychopharmacology 2004;29:1190-1202. 

  51. Fineberg NA, Potenza MN, Chamberlain SR, Berlin HA, Menzies L, Bechara A, et al. Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology 2010;35:591-604. 

  52. Vaidya CJ, Austin G, Kirkorian G, Ridlehuber HW, Desmond JE, Glover GH, et al. Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci U S A 1998;95:14494-14499. 

  53. Elliott R, Rubinsztein JS, Sahakian BJ, Dolan RJ. Selective attention to emotional stimuli in a verbal go/no-go task: an fMRI study. Neuroreport 2000;11:1739-1744. 

  54. Casey BJ, Trainor RJ, Orendi JL, Schubert AB, Nystrom LE, Giedd JN, et al. A developmental functional MRI study of prefrontal activation during performance of a go-no-go task. J Cogn Neurosci 1997; 9:835. 

  55. Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 1998;280:747-749. 

  56. Carter CS, Macdonald AM, Botvinick M, Ross LL, Stenger VA, Noll D, et al. Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. Proc Natl Acad Sci U S A 2000; 97:1944-1948. 

  57. Goldstein RZ, Volkow ND, Wang GJ, Fowler JS, Rajaram S. Addiction changes orbitofrontal gyrus function: involvement in response inhibition. Neuroreport 2001;12:2595-2599. 

  58. Lundqvist T. Cognitive consequences of cannabis use: comparison with abuse of stimulants and heroin with regard to attention, memory and executive functions. Pharmacol Biochem Behav 2005;81:319- 330. 

  59. Homer BD, Solomon TM, Moeller RW, Mascia A, DeRaleau L, Halkitis PN. Methamphetamine abuse and impairment of social functioning: a review of the underlying neurophysiological causes and behavioral implications. Psychol Bull 2008;134:301-310. 

  60. Bolla KI, Eldreth DA, London ED, Kiehl KA, Mouratidis M, Contoreggi C, et al. Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage 2003;19:1085-1094. 

  61. Paulus MP, Hozack N, Frank L, Brown GG, Schuckit MA. Decision making by methamphetamine-dependent subjects is associated with error-rate-independent decrease in prefrontal and parietal activation. Biol Psychiatry 2003;53:65-74. 

  62. Paulus MP, Hozack NE, Zauscher BE, Frank L, Brown GG, Braff DL, et al. Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacology 2002;26:53-63. 

  63. Sofuoglu M. Cognitive enhancement as a pharmacotherapy target for stimulant addiction. Addiction 2010;105:38-48. 

  64. Sofuoglu M, Sugarman DE, Carroll KM. Cognitive function as an emerging treatment target for marijuana addiction. Exp Clin Psychopharmacol 2010;18:109-119. 

  65. Goldstein RZ, Craig AD, Bechara A, Garavan H, Childress AR, Paulus MP, et al. The neurocircuitry of impaired insight in drug addiction. Trends Cogn Sci 2009;13:372-380. 

  66. Silani G, Bird G, Brindley R, Singer T, Frith C, Frith U. Levels of emotional awareness and autism: an fMRI study. Soc Neurosci 2008;3:97-112. 

  67. King-Casas B, Sharp C, Lomax-Bream L, Lohrenz T, Fonagy P, Montague PR. The rupture and repair of cooperation in borderline personality disorder. Science 2008;321:806-810. 

  68. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nat Neurosci 2004; 7:189-195. 

  69. Craig AD. How do you feel--now? The anterior insula and human awareness. Nat Rev Neurosci 2009;10:59-70. 

  70. Laureys S. The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn Sci 2005;9:556-559. 

  71. Goldstein RZ, Alia-Klein N, Tomasi D, Zhang L, Cottone LA, Maloney T, et al. Is decreased prefrontal cortical sensitivity to monetary reward associated with impaired motivation and self-control in cocaine addiction? Am J Psychiatry 2007;164:43-51. 

  72. Goldstein RZ, Alia-Klein N, Tomasi D, Carrillo JH, Maloney T, Woicik PA, et al. Anterior cingulate cortex hypoactivations to an emotionally salient task in cocaine addiction. Proc Natl Acad Sci U S A 2009;106:9453-9458. 

  73. Goldstein RZ, Parvaz MA, Maloney T, Alia-Klein N, Woicik PA, Telang F, et al. Compromised sensitivity to monetary reward in current cocaine users: an ERP study. Psychophysiology 2008;45:705- 713. 

  74. Rinn W, Desai N, Rosenblatt H, Gastfriend DR. Addiction denial and cognitive dysfunction: a preliminary investigation. J Neuropsychiatry Clin Neurosci 2002;14:52-57. 

  75. Naqvi NH, Rudrauf D, Damasio H, Bechara A. Damage to the insula disrupts addiction to cigarette smoking. Science 2007;315:531-534. 

  76. Garavan H, Stout JC. Neurocognitive insights into substance abuse. Trends Cogn Sci 2005;9:195-201. 

  77. Hester R, Nestor L, Garavan H. Impaired error awareness and anterior cingulate cortex hypoactivity in chronic cannabis users. Neuropsychopharmacology 2009;34:2450-2458. 

  78. Grusser SM, Wrase J, Klein S, Hermann D, Smolka MN, Ruf M, et al. Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology (Berl) 2004;175:296-302. 

  79. Paulus MP, Tapert SF, Schuckit MA. Neural activation patterns of methamphetamine-dependent subjects during decision making predict relapse. Arch Gen Psychiatry 2005;62:761-768. 

  80. Grant JE, Brewer JA, Potenza MN. The neurobiology of substance and behavioral addictions. CNS Spectr 2006;11:924-930. 

  81. Crockford DN, el-Guebaly N. Psychiatric comorbidity in pathological gambling: a critical review. Can J Psychiatry 1998;43:43-50. 

  82. Petry NM, Stinson FS, Grant BF. Comorbidity of DSM-IV pathological gambling and other psychiatric disorders: results from the National Epidemiologic Survey on Alcohol and Related Conditions. J Clin Psychiatry 2005;66:564-574. 

  83. van Holst RJ, van den Brink W, Veltman DJ, Goudriaan AE. Brain imaging studies in pathological gambling. Curr Psychiatry Rep 2010;12:418-425. 

  84. Linnet J, Moller A, Peterson E, Gjedde A, Doudet D. Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling. Addiction 2011;106:383-390. 

  85. Hollander E, Pallanti S, Baldini Rossi N, Sood E, Baker BR, Buchsbaum MS. Imaging monetary reward in pathological gamblers. World J Biol Psychiatry 2005;6:113-120. 

  86. Reuter J, Raedler T, Rose M, Hand I, Glascher J, Buchel C. Pathological gambling is linked to reduced activation of the mesolimbic reward system. Nat Neurosci 2005;8:147-148. 

  87. Potenza MN. Should addictive disorders include non-substance-related conditions? Addiction 2006;101 Suppl 1:142-151. 

  88. Potenza MN, Leung HC, Blumberg HP, Peterson BS, Fulbright RK, Lacadie CM, et al. An FMRI Stroop task study of ventromedial prefrontal cortical function in pathological gamblers. Am J Psychiatry 2003;160:1990-1994. 

  89. Potenza MN, Steinberg MA, Skudlarski P, Fulbright RK, Lacadie CM, Wilber MK, et al. Gambling urges in pathological gambling: a functional magnetic resonance imaging study. Arch Gen Psychiatry 2003;60:828-836. 

  90. Crockford DN, Goodyear B, Edwards J, Quickfall J, el-Guebaly N. Cue-induced brain activity in pathological gamblers. Biol Psychiatry 2005;58:787-795. 

  91. Daglish M, Lingford-Hughes A, Nutt D. Human functional neuroimaging connectivity research in dependence. Rev Neurosci 2005;16: 151-157. 

  92. Gu H, Salmeron BJ, Ross TJ, Geng X, Zhan W, Stein EA, et al. Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity. Neuroimage 2010; 53:593-601. 

  93. Kelly C, Zuo XN, Gotimer K, Cox CL, Lynch L, Brock D, et al. Reduced interhemispheric resting state functional connectivity in cocaine addiction. Biol Psychiatry 2011;69:684-692. 

  94. Ho MK, Goldman D, Heinz A, Kaprio J, Kreek MJ, Li MD, et al. Breaking barriers in the genomics and pharmacogenetics of drug addiction. Clin Pharmacol Ther 2010;88:779-791. 

  95. Fregni F, Liguori P, Fecteau S, Nitsche MA, Pascual-Leone A, Boggio PS. Cortical stimulation of the prefrontal cortex with transcranial direct current stimulation reduces cue-provoked smoking craving: a randomized, sham-controlled study. J Clin Psychiatry 2008; 69:32-40. 

  96. Fecteau S, Fregni F, Boggio PS, Camprodon JA, Pascual-Leone A. Neuromodulation of decision-making in the addictive brain. Subst Use Misuse 2010;45:1766-1786. 

  97. Eichhammer P, Johann M, Kharraz A, Binder H, Pittrow D, Wodarz N, et al. High-frequency repetitive transcranial magnetic stimulation decreases cigarette smoking. J Clin Psychiatry 2003;64:951- 953. 

저자의 다른 논문 :

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로