$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

정신질환에서 뇌영상의 이해와 전망
Understanding of Neuroimaging and Its Perspectives in Mental Illnesses 원문보기

생물정신의학 = Korean journal of biological psychiatry, v.18 no.1, 2011년, pp.5 - 14  

김재진 (연세대학교 의과대학 정신과학교실) ,  한기완 (연세대학교 의과대학 의생명과학부) ,  이정석 (연세대학교 의과대학 정신과학교실) ,  최수희 (연세대학교 의과대학 정신과학교실)

Abstract AI-Helper 아이콘AI-Helper

Neuroimaging in psychiatry encompasses the powerful tools available for the in vivo study of brain structure and function. MRI including the volumetry, voxel-base morphometry(VBM) and diffusion tensor imaging (DTI) are useful for assessing brain structure, whereas function MRI, positron emission tom...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이에 따라 정신질환의 원인과 병태생리를 밝히려는 노력에도 뇌의 구조적, 기능적 이상을 탐색하는 뇌영상 기법의 가용성은 지속적으로 증대되어 왔다. 본 소고에서는 이러한 뇌영상 기술의 종류와 정신질환 연구에서의 유용성에 대하여 간략하게 살펴보고자 한다.
  • 이제까지 여러 뇌영상 기술과 현 단계에서의 정신질환 평가에 대한 뇌영상 평가의 현주소에 대하여 간략히 살펴보았다. 현 단계에서 불가피한 의문은 과연 뇌영상 기술이 정신질환의 임상적 진단과 치료에 도움을 주어 환자와 가족들의 삶의 질을 증진하는데 기여하겠는가에 있다.

가설 설정

  • 68) DMN 의 전방부와 후방부 간의 상호작용은 신경세포의 유기적 연결일 수 있고,69) 단순히 자기와 관련된 정신 작용, 즉 정신적 유랑(mental wandering) 상태를 나타내는 것일 수도 있다.67)70) DMN의 이상 소견은 여러 방식으로 정신과적 질환의 병태생리와 연관되어 있다.65) 과제 수행 시 활성화 되는 영역들과 반대로 활성저하를 보이는 DMN 사이의 관계 양상의 변화,71-73) DMN을 이루는 영역들 사이의 연결성 저하,74)75) DMN 기능의 변화76)77) 등이 모두 정신병리적인 증상 발생에 영향을 미칠 수 있다고 알려져 있다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
MEG는 EEG에 비해 어떤 장점을 갖는가? 26) 강한자장이나 방사성 의약품을 사용하지 않기 때문에 비교적 안전하고 MRI나 PET에 비해 뛰어난 시간해상도를 가지고 있다. 뇌 신경의 전기적 신호를 측정하는 뇌파(Electroencephalogram, 이하 EEG)도 뛰어난 시간해상도를 가지고 있지만 전도성이 낮은 두개골을 통과하기 때문에 신호강도의 저하와 왜곡이 발생하는데 비해, MEG에 서의 자기신호는 이러한 문제가 없어 높은 공간해상도를 유지한다. 이에 따라 MEG는 인지과학 연구의 강력한 도구로 각광받고 있으며 시각, 청각, 언어처리 전반의 영역에서 다양한 연구가 진행되고 있다.
MRI는 인체의 내부 구조를 어떻게 영상화하는가? MRI는 인체조직내의 물 분자 중 수소원자의 자기모멘트(magnetic moment) 성질을 이용하는 것으로, 강력한 자기장 내에서 고주파(radio frequency)를 발생시키고 이때 수소원자에서 방출되는 에너지를 측정하여 인체의 내부구조를 영상화한다.1) 전산화단층촬영(computed tomography, 이하 CT)에 비해 공간해상도가 우수하며, 뇌, 척수, 근육, 심장 등과 같은 인체의 연부조직을 관찰하는데 효과적이다.
MR volumetry란 무엇인가? 이는 뇌 국소적 부위의 부피를 측정하여 특정 질환에서그 부피가 정상인에 비해 증가 혹은 감소 여부를 통계적 기법으로 알아내는 방법을 일컫는다. 대부분의 정신질환에서 MRI 영상은 눈으로 보기에 별 이상이 나타나지 않으므로, 미세한 구조적 변화를 찾아내기 위하여 이와 같은 방법이 개발되었다.
질의응답 정보가 도움이 되었나요?

참고문헌 (90)

  1. Novelline RA, Squire LF. Squire's Fundamentals of Radiology. 5th ed. Massachusetts, USA: Harvard University Press;2004. 

  2. Lauterbur PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 1973;242:190-191. 

  3. Hinshaw WS, Bottomley PA, Holland GN. Radiographic thin-section image of the human wrist by nuclear magnetic resonance. Nature 1977;270:722-723. 

  4. Lipton ML. Totally Accessible MRI: A User's Guide to Principles, Technology, and Applications. 1st ed. New York, USA: Springer;2008. 

  5. O'Brien JT. Role of imaging techniques in the diagnosis of dementia. Br J Radiol 2007;80:S71-S77. 

  6. Ashburner J, Friston KJ. Voxel-based morphometry--the methods. Neuroimage 2000;11:805-821. 

  7. Watkins KE, Paus T, Lerch JP, Zijdenbos A, Collins DL, Neelin P, et al. Structural asymmetries in the human brain: a voxel-based statistical analysis of 142 MRI scans. Cereb Cortex 2001;11:868-877. 

  8. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A 2000;97:4398-4403. 

  9. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 1992;89:5951-5955. 

  10. Roy CS, Sherrington CS. On the Regulation of the Blood-supply of the Brain. J Physiol 1890;11:85-158. 

  11. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A 1992;89:5675-5679. 

  12. Folstein M, Folstein S. Functional expressions of the aging brain. Nutr Rev 2010;68 Suppl 2:S70-S73. 

  13. Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 1990;176:439-445. 

  14. Filler AG, Bell BA. Axonal transport, imaging, and the diagnosis of nerve compression. Br J Neurosurg 1992;6:293-295. 

  15. Filler A. Magnetic resonance neurography and diffusion tensor imaging: origins, history and clinical impact of the first 50,000 cases with an assessment of efficacy and utility in a prospective 5,000-patient study group. Neurosurgery 2009;65:A29-A43. 

  16. Cherry S, Dahlbom M. PET: Physics, Instrumentation, and Scanners. 1st ed. New York, USA: Springer;2006. 

  17. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron-emission transaxial tomograph for nuclear imaging(PETT). Radiology 1975;114:89-98. 

  18. Cho ZH, Chan JK, Eriksson L. Circular ring transverse axial positron camera for 3-dimensional reconstruction of radionuclides distribution. IEEE Trans Nucl Sci 1976;23:613-622. 

  19. Pichler BJ, Judenhofer MS, Pfannenberg C. Multimodal imaging approaches: PET/CT and PET/MRI. Handb Exp Parmacol;2008:109-132. 

  20. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, et al. The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 1979;44:127-137. 

  21. Fowler JS, Ido T. Initial and subsequent approach for the synthesis of 18FDG. Semin Nucl Med 2002;32:6-12. 

  22. Som P, Atkins HL, Bandoypadhyay D, Fowler JS, Mac-Gregor RR, Matsui K, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose(F-18): nontoxic tracer for rapid tumor detection. J Nucl Med 1980;21:670-675. 

  23. Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2(15)O: I. Theory and error analysis. J Nucl Med 1983;24:782-789. 

  24. Ricker JH, Muller RA, Zafonte RD, Black KM, Millis SR, Chugani H. Verbal recall and recognition following traumatic brain injury: a [0-15]-water positron emission tomography study. J Clin Exp Neuropsychol 2001;23:196-206. 

  25. Morris ED, Fisher RE, Alpert NM, Rauch SL, Fischman AJ. In vivo imaging of neuromodulation using positron emission tomography: optimal ligand characteristics and task length for detection of activation. Hum Brain Mapp 1995;3:35-55. 

  26. Cohen D. Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer. Science 1972;175:664-666. 

  27. Sutherling WW, Crandall PH, Darcey TM, Becker DP, Levesque MF, Barth DS. The magnetic and electric fields agree with intracranial localizations of somatosensory cortex. Neurology 1988;38:1705-1714. 

  28. de Jongh A, Baayen JC, de Munck JC, Heethaar RM, Vandertop WP, Stam CJ. The influence of brain tumor treatment on pathological delta activity in MEG. Neuroimage 2003;20:2291-2301. 

  29. Staal WG, Hulshoff Pol HE, Schnack HG, Hoogendoorn ML, Jellema K, Kahn RS. Structural brain abnormalities in patients with schizophrenia and their healthy siblings. Am J Psychiatry 2000;157:416-421. 

  30. Flaum M, Swayze VW 2nd, O'Leary DS, Yuh WT, Herhardt JC, Arndt SV, et al. Effects of diagnosis, laterality, and gender on brain morphology in schizophrenia. Am J Psychiatry 1995;152:704-714. 

  31. McKinnon MC, Yucel K, Nazarov A, MacQueen GM. A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J Psychiatry Neurosci 2009;34:41-54. 

  32. Keshavan MS, Dick E, Mankowski I, Harenski K, Montrose DM, Diwadkar V, et al. Decreased left amygdala and hippocampal volumes in young offspring at risk for schizophrenia. Schizophr Res 2002;58:173-183. 

  33. Seidman LJ, Faraone SV, Goldstein JM, Kremen WS, Horton NJ, Makris N, et al. Left hippocampal volume as a vulnerability indicator for schizophrenia: a magnetic resonance imaging morphometric study of nonpsychotic first-degree relatives. Arch Gen Psychiatry 2002;59:839-849. 

  34. Chen MC, Hamilton JP, Gotlib IH. Decreased hippocampal volume in healthy girls at risk of depression. Arch Gen Psychiatry 2010;67:270-276. 

  35. Jung WH, Jang JH, Byun MS, An SK, Kwon JS. Structural brain alterations in individuals at ultra-high risk for psychosis: a review of magnetic resonance imaging studies and future directions. J Korean Med Sci 2010;25:1700-1709. 

  36. Kaymaz N, van Os J. Heritability of structural brain traits an endophenotype approach to deconstruct schizophrenia. Int Rev Neurobiol 2009;89:85-130. 

  37. DeLisi LE, Hoff AL, Schwartz JE, Shields GW, Halthore SN, Gupta SM, et al. Brain morphology in first-episode schizophrenic-like psychotic patients: a quantitative magnetic resonance imaging study. Biol Psychiatry 1991;29:159-175. 

  38. Hirayasu Y, Shenton ME, Salisbury DF, Dickey CC, Fischer IA, Mazzoni P, et al. Lower left temporal lobe MRI volumes in patients with first-episode schizophrenia compared with psychotic patients with first-episode affective disorder and normal subjects. Am J Psychiatry 1998;155:1384-1391. 

  39. Keshavan MS, Haas GL, Kahn CE, Aguilar E, Dick EL, Schooler NR, et al. Superior temporal gyrus and the course of early schizophrenia: progressive, static, or reversible? J Psychiatr Res 1998;32:161-167. 

  40. Ebdrup BH, Glenthoj B, Rasmussen H, Aggernaes B, Langkilde AR, Paulson OB, et al. Hippocampal and caudate volume reductions in antipsychotic-naive first-episode schizophrenia. J Psychiatry Neurosci 2010;35:95-104. 

  41. Cahn W, Hulshoff Pol HE, Bongers M, Schnack HG, Mandl RC, Van Haren NE, et al. Brain morphology in antipsychotic-nalve schizophrenia: a study of multiple brain structures. Br J Psychiatry Suppl 2002;43:s66-s72. 

  42. Gur RE, Cowell P, Turetsky BI, Gallacher F, Cannon T, Bilker W, et al. A follow-up magnetic resonance imaging study of schizophrenia. Relationship of neuroanatomical changes to clinical and neurobehavioral measures. Arch Gen Psychiatry 1998;55:145-152. 

  43. Takahashi T, Wood SJ, Soulsby B, McGorry PD, Tanino R, Suzuki M, et al. Follow-up MRI study of the insular cortex in first-episode psychosis and chronic schizophrenia. Schizophr Res 2009;108:49-56. 

  44. Scherk H, Falkai P. Effects of antipsychotics on brain structure. Curr Opin Psychiatry 2006;19:145-150. 

  45. Bonilha L, Molnar C, Horner MD, Anderson B, Forster L, George MS, et al. Neurocognitive deficits and prefrontal cortical atrophy in patients with schizophrenia. Schizophr Res 2008;101:142-151. 

  46. Cheng YQ, Xu J, Chai P, Li HJ, Luo CR, Yang T, et al. Brain volume alteration and the correlations with the clinical characteristics in drug-nal¨ve first-episode MDD patients: a voxel-based morphometry study. Neurosci Lett 2010;480:30-34. 

  47. Narr KL, Toga AW, Szeszko P, Thompson PM, Woods RP, Robinson D, et al. Cortical thinning in cingulate and occipital cortices in first episode schizophrenia. Biol Psychiatry 2005;58:32-40. 

  48. Nesvag R, Lawyer G, Varnas K, Fjell AM, Walhovd KB, Frigessi A, et al. Regional thinning of the cerebral cortex in schizophrenia: effects of diagnosis, age and antipsychotic medication. Schizophr Res 2008;98:16-28. 

  49. Schultz CC, Koch K, Wagner G, Roebel M, Nenadic I, Gaser C, et al. Increased parahippocampal and lingual gyrification in first-episode schizophrenia. Schizophr Res 2010;123:137-144. 

  50. Qiu A, Zhong J, Graham S, Chia MY, Sim K. Combined analyses of thalamic volume, shape and white matter integrity in first-episode schizophrenia. Neuroimage 2009;47:1163-1171. 

  51. Qiu A, Tuan TA, Woon PS, Abdul-Rahman MF, Graham S, Sim K. Hippocampal-cortical structural connectivity disruptions in schizophrenia: an integrated perspective from hippocampal shape, cortical thickness, and integrity of white matter bundles. Neuroimage 2010;52:1181-1189. 

  52. Ecker C, Marquand A, Mourao-Miranda J, Johnston P, Daly EM, Brammer MJ, et al. Describing the brain in autism in five dimensions--magnetic resonance imagingassisted diagnosis of autism spectrum disorder using a multiparameter classification approach. J Neurosci 2010;30:10612-10623. 

  53. Yoon U, Lee JM, Im K, Shin YW, Cho BH, Kim IY, et al. Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia. Neuroimage 2007;34:1405-1415. 

  54. Kanaan RA, Kim JS, Kaufmann WE, Pearlson GD, Barker GJ, McGuire PK. Diffusion tensor imaging in schizophrenia. Biol Psychiatry 2005;58:921-929. 

  55. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007;8:700-711. 

  56. Le Bihan D, Jezzard P, Haxby J, Sadato N, Rueckert L, Mattay V. Functional magnetic resonance imaging of the brain. Ann Intern Med 1995;122:296-303. 

  57. Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P. Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: an fMRI study. Hum Brain Mapp 2005;26:231-239. 

  58. Perlstein WM, Dixit NK, Carter CS, Noll DC, Cohen JD. Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia. Biol Psychiatry 2003;53:25-38. 

  59. Keedwell PA, Andrew C, Williams SC, Brammer MJ, Phillips ML. The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry 2005;58:843-853. 

  60. Taylor SF, Phan KL, Britton JC, Liberzon I. Neural response to emotional salience in schizophrenia. Neuropsychopharmacology 2005;30:984-995. 

  61. Dierks T, Linden DE, Jandl M, Formisano E, Goebel R, Lanfermann H, et al. Activation of Heschl's gyrus during auditory hallucinations. Neuron 1999;22:615-621. 

  62. Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD. Detecting awareness in the vegetative state. Science 2006;313:1402. 

  63. Haut KM, Lim KO, MacDonald A 3rd. Prefrontal cortical changes following cognitive training in patients with chronic schizophrenia: effects of practice, generalization, and specificity. Neuropsychopharmacology 2010;35:1850-1859. 

  64. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001;98:676-682. 

  65. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 2009;33:279-296. 

  66. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 2003;100:253-258. 

  67. Gusnard DA, Raichle ME, Raichle ME. Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2001;2:685-694. 

  68. Eichele T, Debener S, Calhoun VD, Specht K, Engel AK, Hugdahl K, et al. Prediction of human errors by maladaptive changes in event-related brain networks. Proc Natl Acad Sci U S A 2008;105:6173-6178. 

  69. Buzsaki G, Draguhn A. Neuronal oscillations in cortical networks. Science 2004;304:1926-1929. 

  70. Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN. Wandering minds: the default network and stimulus-independent thought. Science 2007;315:393-395. 

  71. Zhou Y, Liang M, Tian L, Wang K, Hao Y, Liu H, et al. Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res 2007;97:194-205. 

  72. Castellanos FX, Margulies DS, Kelly C, Uddin LQ, Ghaffari M, Kirsch A, et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attentiondeficit/hyperactivity disorder. Biol Psychiatry 2008;63:332-337. 

  73. Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. Competition between functional brain networks mediates behavioral variability. Neuroimage 2008;39:527-537. 

  74. Damoiseaux JS, Beckmann CF, Arigita EJ, Barkhof F, Scheltens P, Stam CJ, et al. Reduced resting-state brain activity in the "default network" in normal aging. Cereb Cortex 2008;18:1856-1864. 

  75. Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, et al. Changes in hippocampal connectivity in the early stages of Alzheimer's disease: evidence from resting state fMRI. Neuroimage 2006;31:496-504. 

  76. Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD. Aberrant "default mode" functional connectivity in schizophrenia. Am J Psychiatry 2007;164:450-457. 

  77. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 2007;62:429-437. 

  78. Pihlajamaki M, O'Keefe K, Bertram L, Tanzi RE, Dickerson BC, Blacker D, et al. Evidence of altered posteromedial cortical FMRI activity in subjects at risk for Alzheimer disease. Alzheimer Dis Assoc Disord 2010;24:28-36. 

  79. Horwitz B. The elusive concept of brain connectivity. Neuroimage 2003;19:466-470. 

  80. Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 2009;19:72-78. 

  81. Hampson M, Tokoglu F, Sun Z, Schafer RJ, Skudlarski P, Gore JC, et al. Connectivity-behavior analysis reveals that functional connectivity between left BA39 and Broca's area varies with reading ability. Neuroimage 2006;31:513-519. 

  82. Ranganath C, Heller A, Cohen MX, Brozinsky CJ, Rissman J. Functional connectivity with the hippocampus during successful memory formation. Hippocampus 2005;15:997-1005. 

  83. Pezawas L, Meyer-Lindenberg A, Drabant EM, Verchinski BA, Munoz KE, Kolachana BS, et al. 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nat Neurosci 2005;8:828-834. 

  84. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005;102:9673-9678. 

  85. Raichle ME, Gusnard DA. Intrinsic brain activity sets the stage for expression of motivated behavior. J Comp Neurol 2005;493:167-176. 

  86. Fransson P. How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia 2006;44:2836-2845. 

  87. Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD, et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain 2010;133:1352-1367. 

  88. Kim E, Ku J, Namkoong K, Lee W, Lee KS, Park JY, et al. Mammillothalamic functional connectivity and memory function in Wernicke's encephalopathy. Brain 2009;132:369-376. 

  89. Moses-Kolko EL, Perlman SB, Wisner KL, James J, Saul AT, Phillips ML. Abnormally reduced dorsomedial prefrontal cortical activity and effective connectivity with amygdala in response to negative emotional faces in postpartum depression. Am J Psychiatry 2010;167:1373-1380. 

  90. Kim E, Ku J, Jung YC, Lee H, Kim SI, Kim JJ, et al. Restoration of mammillothalamic functional connectivity through thiamine replacement therapy in Wernicke's encephalopathy. Neurosci Lett 2010;479:257-261. 

저자의 다른 논문 :

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로