$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

관류 자기공명영상의 원리 및 기술
Principles and Technical Aspects of Perfusion Magnetic Resonance Imaging 원문보기

대한자기공명의과학회지 = Journal of the Korean society of magnetic resonance in medicine, v.15 no.2, 2011년, pp.91 - 101  

장건호 (경희대학교 의과대학 강동경희대학교병원 영상의학과) ,  김호성 (울산대학교 의과대학 서울아산병원 영상의학과) ,  김선미 (경희대학교 의과대학 강동경희대학교병원 영상의학과) ,  류창우 (경희대학교 의과대학 강동경희대학교병원 영상의학과)

초록
AI-Helper 아이콘AI-Helper

관류 자기공명영상은 크게 외인성과 내인성 조영제를 사용하는 방법으로 나눌 수 있고, 외인성 조영제를 사용하는 방법으로는 DSC 와 DCE 방법이 있으며, 내인성 조영제를 사용하는 방법으로는 ASL 이 있다. 이들 관류 자기공명영상 방법들은 환자의 상태와 나타내고자 하는 영상인자에 따라 선별적으로 최적화되어 사용되어야 한다. 그 예로 급성 뇌졸중 환자의 경우 매우 빠른 영상획득이 최우선적인 인자이므로 DSC 가 주로 이용되고 있고, 뇌종양 환자의 경우 여러 물리적 인자를 고려한 DSC 혹은 DCE 스캔이 필요하다. 또한 소아나 가임여성 및 신장병질환이 있는 경우는 ASL 을 이용되고 있다. 관류 자기공명영상 기술은 방사성 물질을 전혀 사용하지 않아 약물효과의 평가와 기타 치료 효과를 이해하는데 많은 응용이 있을 것으로 생각된다.

Abstract AI-Helper 아이콘AI-Helper

Perfusion magnetic resonance imaging (pMRI) is a special technique for evaluation of blood flow. Exogenous pMRI methods which are dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) use an intravenous bolus injection of paramagnetic contrast agent. In contrast, an endogenous pM...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 내인성 관류 자기공명영상법은 임상 연구에 주로 응용되고 있다. 따라서 본 논문의 목적은 관류 자기공명영상법의 이해를 돕기 위하여 외인성 및 내인성 관류 자기공명영상법에 대한 원리와 기술적인 면을 기술하는데 있다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
관류 자기공명영상를 얻기 위해 주로 사용되는 조영제는? 관류 자기공명영상을 얻기 위해서 주로 사용되는 조영제는 가도리늄 (Gadolinium) 계통의 조영제를 사용한다. 이 조영제는 일반적으로 임상에 사용되고 있는 조영제 중 하나이다.
외인성 조영제를 사용하는 방법에는 무엇이 있는가? 관류 자기공명영상은 크게 외인성과 내인성 조영제를 사용하는 방법으로 나눌 수 있고, 외인성 조영제를 사용하는 방법으로는 DSC 와 DCE 방법이 있으며, 내인성 조영제를 사용하는 방법으로는 ASL 이 있다. 이들 관류 자기공명영상 방법들은 환자의 상태와 나타내고자 하는 영상인자에 따라 선별적으로 최적화되어 사용되어야 한다.
가도리늄 조영제의 효과에는 무엇이 있는가? 가도리늄 조영제의 효과를 몇 가지 살펴보면 아래와 같다. 첫째, 이 조영제는 물과 혼합되면 T1 이완 값 (T1 relaxation)을 짧게 하여 T1 강조 영상에서 신호 증가를 유발한다. 둘째, 이 조영제는 T2 이완 값(T2 relaxation)을 감소하고, T2 강조 영상이나 T2* 강조 영상에서 신호를 감소시킨다. 그러나 T1 감소 효과 및 T2 감소 효과는 가도리늄이 있는 곳 (혈관내)과 그 주위(혈관외)에서 발생하게 된다. 따라서 모세혈관 외부에서도 자화감수율(magnetic susceptibility) 효과를 잘 관찰 할 수 있어 혈관 내 효과와 더불어 그 주변에서도 가도리늄의 효과를 관찰 할 수 있다. 또한 자화 감수율 효과는 가도리늄이 없는 정맥혈액에서도 관찰할 수 있다. 하지만 내부 자화감수율(intrinsic magnetic susceptibility) 효과의 근본이 되는 혈색소(hemoglobin)의 양은 매우 적어 그 변화가 눈으로 띌 정도로 많지 못하다(< 1~3%)(4). 따라서 자화감수율 효과를 매우 높게 하기 위해서 외부에서 상자성(paramagnetic)물질을 주입하여 자화감수율을 유발시킬 수 있는 조영제가 필요하고, 주로 사용하는 것이 바로 가도리늄이다. 가도리늄을 사용할 경우 신호의 변화를 약 20% 이상 높일 수 있다. 이것이 바로 관류 영상에 조영제를 사용하는 대표적인 이유이다.
질의응답 정보가 도움이 되었나요?

참고문헌 (64)

  1. Barbier EL, Lamalle L, Decorps M. Methodology of brain perfusion imaging. J Magn Reson Imaging 2001;13:496-520 

  2. Brown GG, Clark C, Liu TT. Measurement of cerebral perfusion with arterial spin labeling: Part 2. Applications. J Int Neuropsychol Soc 2007;13:526-538 

  3. Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med 1990;14:249-265 

  4. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 1990;87:9868-9872 

  5. van Osch MJ, Vonken EJ, Viergever MA, van der Grond J, Bakker CJ. Measuring the arterial input function with gradient echo sequences. Magn Reson Med 2003;49:1067-1076 

  6. Johnson G, Wetzel SG, Cha S, Babb J, Tofts PS. Measuring blood volume and vascular transfer constant from dynamic, $T(2)^{\ast}$ -weighted contrast-enhanced MRI. Magn Reson Med 2004;51:961-968 

  7. Fritz-Hansen T, Rostrup E, Larsson HB, Sondergaard L, Ring P, Henriksen O. Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging. Magn Reson Med 1996;36:225-231 

  8. Bleeker EJ, van Buchem MA, Webb AG, van Osch MJ. Phasebased arterial input function measurements for dynamic susceptibility contrast MRI. Magn Reson Med 2010;64:358-368 

  9. van Osch MJ, Vonken EJ, Bakker CJ, Viergever MA. Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med 2001;45:477-485 

  10. van Osch MJ, van der Grond J, Bakker CJ. Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. J Magn Reson Imaging 2005;22:704-709 

  11. Calamante F, Morup M, Hansen LK. Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 2004;52:789-797 

  12. Calamante F, Gadian DG, Connelly A. Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 2000;44:466-473 

  13. Alsop DC, Wedmid A, Schlaug G. Defining a local input function for perfusion quantification with bolus contrast MRI. 2002; Honolulu, Hawaii p659 

  14. Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn Reson Med 1996;36:715-725 

  15. Wu O, Ostergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 2003;50:164-174 

  16. Smith MR, Lu H, Trochet S, Frayne R. Removing the effect of SVD algorithmic artifacts present in quantitative MR perfusion studies. Magn Reson Med 2004;51:631-634 

  17. Vonken EP, Beekman FJ, Bakker CJ, Viergever MA. Maximum likelihood estimation of cerebral blood flow in dynamic susceptibility contrast MRI. Magn Reson Med 1999;41:343-350 

  18. Chen JJ, Smith MR, Frayne R. Advantages of frequency-domain modeling in dynamic-susceptibility contrast magnetic resonance cerebral blood flow quantification. Magn Reson Med 2005;53:700-707 

  19. Lupo JM, Cha S, Chang SM, Nelson SJ. Dynamic susceptibility-weighted perfusion imaging of high-grade gliomas: characterization of spatial heterogeneity. AJNR Am J Neuroradiol 2005;26:1446-1454 

  20. Cha S, Lupo JM, Chen MH, Lamborn KR, McDermott MW, Berger MS, Nelson SJ, Dillon WP. Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 2007;28:1078-1084 

  21. Tofts PS, Kermode AG. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 1991;17:357-367 

  22. Choyke PL, Dwyer AJ, Knopp MV. Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J Magn Reson Imaging 2003;17:509-520 

  23. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999;10:223-232 

  24. Patankar TF, Haroon HA, Mills SJ, Baleriaux D, Buckley DL, Parker GJ, Jackson A. Is volume transfer coefficient (K(trans)) related to histologic grade in human gliomas? AJNR Am J Neuroradiol 2005;26:2455-2465 

  25. Tofts PS, Berkowitz B, Schnall MD. Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model. Magn Reson Med 1995;33:564-568 

  26. Harrer JU, Parker GJ, Haroon HA, Buckley DL, Embelton K, Roberts C, Baleriaux D, Jackson A. Comparative study of methods for determining vascular permeability and blood volume in human gliomas. J Magn Reson Imaging 2004;20:748-757 

  27. Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med 1992;23:37-45 

  28. Edelman RR, Chen Q. EPISTAR MRI: multislice mapping of cerebral blood flow. Magn Reson Med 1998;40:800-805 

  29. Golay X, Stuber M, Pruessmann KP, Meier D, Boesiger P. Transfer insensitive labeling technique (TILT): application to multislice functional perfusion imaging. J Magn Reson Imaging 1999;9:454-461 

  30. Kim SG, Tsekos NV. Perfusion imaging by a flow-sensitive alternating inversion recovery (FAIR) technique: application to functional brain imaging. Magn Reson Med 1997;37:425-435 

  31. Kwong KK, Chesler DA, Weisskoff RM, Donahue KM, Davis TL, Ostergaard L, Campbell TA, Rosen BR. MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med 1995;34:878-887 

  32. Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997;10:237-249 

  33. Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 1998;39:702-708 

  34. Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 1996;16:1236-1249 

  35. Alsop DC, Detre JA. Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology 1998;208:410-416 

  36. Detre JA, Zhang W, Roberts DA, Silva AC, Williams DS, Grandis DJ, Koretsky AP, Leigh JS. Tissue specific perfusion imaging using arterial spin labeling. NMR Biomed 1994;7:75-82 

  37. Wong EC, Cronin M, Wu WC, Inglis B, Frank LR, Liu TT. Velocity-selective arterial spin labeling. Magn Reson Med 2006;55:1334-1341 

  38. Duhamel G, de Bazelaire C, Alsop DC. Evaluation of systematic quantification errors in velocity-selective arterial spin labeling of the brain. Magn Reson Med 2003;50:145-153 

  39. Edelman RR, Siewert B, Darby DG, Thangaraj V, Nobre AC, Mesulam MM, Warach S. Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 1994;192:513-520 

  40. Kao YH, Wan X, MacFall JR. Simultaneous multislice acquisition with arterial-flow tagging (SMART) using echo planar imaging (EPI). Magn Reson Med 1998;39:662-665 

  41. Helpern JA, Branch CA, Yongbi MN, Huang NC. Perfusion imaging by un-inverted flow-sensitive alternating inversion recovery (UNFAIR). Magn Reson Imaging 1997;15:135-139 

  42. Keilholz-George SD, Knight-Scott J, Berr SS. Theoretical analysis of the effect of imperfect slice profiles on tagging schemes for pulsed arterial spin labeling MRI. Magn Reson Med 2001;46:141-148 

  43. Schwarzbauer C, Heinke W. BASE imaging: a new spin labeling technique for measuring absolute perfusion changes. Magn Reson Med 1998;39:717-722 

  44. Berr SS, Mai VM. Extraslice spin tagging (EST) magnetic resonance imaging for the determination of perfusion. J Magn Reson Imaging 1999;9:146-150 

  45. Jahng GH, Zhu XP, Matson GB, Weiner MW, Schuff N. Improved perfusion-weighted MRI by a novel double inversion with proximal labeling of both tagged and control acquisitions. Magn Reson Med 2003;49:307-314 

  46. Jahng GH, Weiner MW, Schuff N. Improved arterial spin labeling method: applications for measurements of cerebral blood flow in human brain at high magnetic field MRI. Med Phys 2007;34:4519-4525 

  47. Wong EC, Buxton RB, Frank LR. A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Magn Reson Med 1998;40:348-355 

  48. Garcia DM, de Bazelaire C, Alsop DC. Pseudo-continuous flow driven adiabatic inversion for arterial spin labeling. ISMRM 2005;Miami Beach, Florida. p 37 

  49. Jahng GH, Matson GB, Weiner MW, Schuff N. Improvements to control scan of ASL-perfusion MRI by improving null pulse for use with the repeated shallow flip angle excitations. ISMRM 2006;Seattle, Washington, USA. p 3433 

  50. Hendrikse J, van der Grond J, Lu H, van Zijl PC, Golay X. Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke 2004;35:882-887 

  51. Davies NP, Jezzard P. Selective arterial spin labeling (SASL): perfusion territory mapping of selected feeding arteries tagged using two-dimensional radiofrequency pulses. Magn Reson Med 2003;49:1133-1142 

  52. Zaharchuk G, Ledden PJ, Kwong KK, Reese TG, Rosen BR, Wald LL. Multislice perfusion and perfusion territory imaging in humans with separate label and image coils. Magn Reson Med 1999;41:1093-1098 

  53. Blamire AM, Styles P. Spin echo entrapped perfusion image (SEEPAGE). A nonsubtraction method for direct imaging of perfusion. Magn Reson Med 2000;43:701-704 

  54. Chen Q, Siewert B, Bly BM, Warach S, Edelman RR. STARHASTE: perfusion imaging without magnetic susceptibility artifact. Magn Reson Med 1997;38:404-408 

  55. Golay X, Petersen ET, Hui F. Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med 2005;53:15-21 

  56. Petersen ET, Lim T, Golay X. Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med 2006;55:219-232 

  57. Lai S, Wang J, Jahng GH. FAIR exempting separate T (1) measurement (FAIREST): a novel technique for online quantitative perfusion imaging and multi-contrast fMRI. NMR Biomed 2001;14:507-516 

  58. Gunther M, Bock M, Schad LR. Arterial spin labeling in combination with a look-locker sampling strategy: inflow turbosampling EPI-FAIR (ITS-FAIR). Magn Reson Med 2001;46:974-984 

  59. Mai VM, Berr SS. MR perfusion imaging of pulmonary parenchyma using pulsed arterial spin labeling techniques: FAIRER and FAIR. J Magn Reson Imaging 1999;9:483-487 

  60. Zhou J, Mori S, van Zijl PC. FAIR excluding radiation damping (FAIRER). Magn Reson Med 1998;40:712-719 

  61. Luh WM, Wong EC, Bandettini PA, Hyde JS. QUIPSS II with thin-slice TI1 periodic saturation: a method for improving accuracy of quantitative perfusion imaging using pulsed arterial spin labeling. Magn Reson Med 1999;41:1246-1254 

  62. Ye FQ, Frank JA, Weinberger DR, McLaughlin AC. Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med 2000;44:92-100 

  63. Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB. Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med 1999;42:849-863 

  64. Liu TT, Wong EC. A signal processing model for arterial spin labeling functional MRI. Neuroimage 2005;24:207-215 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로