$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Automated Markerless Analysis of Human Gait Motion for Recognition and Classification 원문보기

ETRI journal, v.33 no.2, 2011년, pp.259 - 266  

Yoo, Jang-Hee (Software Research Laboratory, ETRI) ,  Nixon, Mark S. (School of Electronics and Computer Science, University of Southampton)

Abstract AI-Helper 아이콘AI-Helper

We present a new method for an automated markerless system to describe, analyze, and classify human gait motion. The automated system consists of three stages: I) detection and extraction of the moving human body and its contour from image sequences, ii) extraction of gait figures by the joint angle...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In this paper, we propose a new approach to an automated markerless system for describing, analyzing, and classifying human gait by computer vision techniques without subject contact or intervention. The human body and its contour are extracted from the image sequences from one of the largest video gait databases, which comprises digital video (DV) recordings of walking subjects.
  • The trajectories of the joint angles followed the earlier results of medical studies. Also, the gait features based on the motion parameters were extracted, and the k-NN classifier was used to analyze the discriminatory ability of the extracted features. The results produced classification rates of 97% CCR for 30 subjects and 84% CCR for 100 subjects.

대상 데이터

  • An image sequence contains only a single subject walking at normal speed and was acquired at 25 fps with 720×576 color pixels from good quality progressive scan DV cameras.
  • In the experiments, 100 different subjects (16 females and 84 males) with seven image sequences of each subject from the SOTON indoor track database, a total of 700 image sequences (≅19,534 images), are used.
  • Undoubtedly, a more sophisticated classifier would be prudent, but the interest here is to examine the genuine discriminatory ability of the features. A total of the 500 feature vectors extracted from the front four of the seven sequences and their means for each of 100 different subjects are used as the training samples. Also, a total of 100 feature vectors extracted from the means of the remaining three of the seven sequences for each of 100 different subjects are used as the test samples.
  • A total of the 500 feature vectors extracted from the front four of the seven sequences and their means for each of 100 different subjects are used as the training samples. Also, a total of 100 feature vectors extracted from the means of the remaining three of the seven sequences for each of 100 different subjects are used as the test samples.

이론/모형

  • To classify the gait patterns, a simple k-NN algorithm is employed as a classifier applied to a feature space comprised of 10 features based on the motion parameters: body height, cycle time, stride length, speed, average joint angles, variation of hip angles, the correlation coefficient between the left and right leg angles, and the center coordinates of the hip-knee cyclogram.
본문요약 정보가 도움이 되었나요?

참고문헌 (22)

  1. V.T. Inman, H.J. Ralston, and F. Todd, Human Walking, Baltimore: Williams & Wilkins, 1981. 

  2. D.A. Winter, The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, Ontario: Waterloo Biomechanics, 1991. 

  3. M.S. Nixon, T. Tan, and R. Chellappa, Human Identification Based on Gait, Springer, 2006. 

  4. M.K. Leung and Y.H. Yang, "First Sight: A Human Body Outline Labeling System," IEEE Trans. Pattern Anal. Mach. Intell., vol. 17, no. 4, 1995, pp.359-377. 

  5. J. Perry, Gait Analysis: Normal and Pathological Function, NJ: Slack, 1992. 

  6. G. Johansson, "Visual Perception of Biological Motion and a Model for Its Analysis," Perception and Psychophysics, vol. 14, no. 2, 1973, pp. 201-211. 

  7. S.V. Stevenage, M.S. Nixon, and K. Vince, "Visual Analysis of Gait as a Cue to Identity," Applied Cognitive Psychology, vol. 13, 1999, pp. 513-526. 

  8. M.P. Murray, A.B. Drought, and R.C. Kory, "Walking Patterns of Normal Men," J. Bone and Joint Surgery, vol. 46A, no. 2, 1964, pp. 335-360. 

  9. C.W. Cho et al., "A Vision-Based Analysis System for Gait Recognition in Patients with Parkinson's Disease," Expert Syst. with Appl., vol. 36, no. 3, Apr. 2009, pp. 7033-7039. 

  10. J.D. Shutler et al., "On a Large Sequence-Based Human Gait Database," Proc. Recent Advances in Soft Computing, Nottingham, UK, 2002. 

  11. R. Poppe, "Vision-Based Human Motion Analysis: An Overview," Comput. Vision and Image Understanding, vol. 108, nos. 1-2, 2007, pp. 4-18. 

  12. T. Ding, "A Robust Identification Approach to Gait Recognition," Proc. IEEE Conf. Comput. Vision Pattern Recog., Alaska, USA, 2008. 

  13. R.D. Seely et al., "View Invariant Gait Recognition," Handbook of Remote Biometrics, Springer, 2009, pp. 61-81. 

  14. A. Tsuji, Y. Makihara, and Y. Yagi, "Silhouette Transformation Based on Walking Speed for Gait Identification," Proc. IEEE Conf. Comput. Vision Pattern Recog., San Francisco, USA, 2010. 

  15. K. Bashir, T. Xiang, and S. Gong, "Gait Recognition without Subject Cooperation," Pattern Recog. Lett., 2010. 

  16. M. Gleicher, "Animation from Observation: Motion Capture and Motion Editing," Comput. Graphics, vol. 33, no. 4, 1999, pp. 51-55. 

  17. M.W. Whittle, Gait Analysis: An Introduction, Oxford: Butterworth Heinemann, 2002. 

  18. R.F.M. Kleissen et al., "Electromyography in the Biomechanical Analysis of Human Movement and its Clinical Application," Gait and Posture, vol. 8, no. 2, 1988, pp.143-158. 

  19. T.B. Moeslund and E. Granum, "A Survey of Computer Vision-Based Human Motion Capture," Comput. Vision and Image Understanding, vol. 81, no. 3, 2001, pp.231-268. 

  20. J.K. Aggarwal and Q. Cai, "Human Motion Analysis: A Review," Comput. Vision and Image Understanding, vol. 73, no. 3, 1999, pp.428-440. 

  21. W.T. Dempster and G.R.L. Gaughran, "Properties of Body Segments Based on Size and Weight," American J. Anatomy, vol. 120, 1967, pp. 33-54. 

  22. R. Drillis and R. Contini, "Body Segment Parameters," Technical Report 1163-03, New York University, New York, 1966. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로