$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

무채혈 혈당 측정기의 혈당 측정 원리: 혈당 검출방법 중심으로
Blood Glucose Measurement Principles of Non-invasive Blood Glucose Meter: Focused on the Detection Methods of Blood Glucose 원문보기

Journal of biomedical engineering research : the official journal of the Korean Society of Medical & Biological Engineering, v.33 no.3, 2012년, pp.114 - 127  

안원식 (서울대학교 병원 마취통증의학과, 의학연구원 의용생체공학연구소) ,  김진태 (서울대학교 병원 마취통증의학과, 의학연구원 의용생체공학연구소)

Abstract AI-Helper 아이콘AI-Helper

Recent technical advancement allows noninvasive measurement of blood glucose. In this literature, we reviewed various noninvasive techniques for measuring glucose concentration. Optical or electrical methods have been investigated. Optical techniques include near-infrared spectroscopy, Raman spectro...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
당뇨병의 유병률이 증가하는 원인은? 고령화 사회, 서구화된 생활 습관 등으로 당뇨병의 유병률은 증가하고 있다[1]. 장기적으로 적절한 혈당 조절이 안될 경우 결국 체내 주요 장기에 합병증을 일으키므로, 당뇨병의 예후를 향상시키는 가장 중요한 방법은 혈당을 정상적으로 유지하는 것이다[2,3].
당뇨병의 예후를 향상시키는 제일 중요한 방법은? 고령화 사회, 서구화된 생활 습관 등으로 당뇨병의 유병률은 증가하고 있다[1]. 장기적으로 적절한 혈당 조절이 안될 경우 결국 체내 주요 장기에 합병증을 일으키므로, 당뇨병의 예후를 향상시키는 가장 중요한 방법은 혈당을 정상적으로 유지하는 것이다[2,3]. 적절한 혈당 조절을 하기 위해서는 정확한 혈당 측정이 매우 중요하다.
무채혈 혈당측정기 기술의 4가지에는 무엇이 있는가? 무채혈 혈당 측정의 개념적 정의는 혈액을 채취하지 않고 혈당 측정을 가능케 하는 것이다. 현재 기술로 채혈 없이 혈당을 측정하는 방법은 크게 4가지로 나뉘어지는데, 첫째 광학적인 방법, 둘째 전기 생리학적인 방법, 셋째 호기에서 측정하거나 여러 방법을 혼합하는 등의 기타 방법, 넷째 조직에 센서를 삽입하여 혈액이 아니라 조직액에서 혈당을 측정하는 방식이다. 네 번째 방법의 경우 지속적 혈당 모니터링 시스템 방법으로 불리는데 어느 정도는 침습적인 방법으로 본 논문에서는 다루지 않기로 하였다.
질의응답 정보가 도움이 되었나요?

참고문헌 (49)

  1. Korean Diabetes Association, Health Insurance Review & Assessment service : Task Force Team for Basic Statistical Study of Korean Diabetes Mellitus," diabetes, 1st ed. seoul, Golden Fishing Ground., pp. 14-17, 2007. 

  2. UK Prospective Diabetes Study (UKPDS) Group, "Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33)," Lancet, vol. 352, no. 9131, pp. 837-853, 1998. 

  3. The Diabetes, Control and Complications Trial Research, Group, "The Effect Of Intensive Treatment Of Diabetes On The Development And Progression Of Long-Term Complications In Insulin-Dependent Diabetes Mellitus," New England Journal of Medicine, vol. 329, no. 14, pp. 977-986, 1993. 

  4. D.E. Goldstein, R.R. Little, R.A. Lorenz et al., "Tests of Glycemia in Diabetes," Diabetes Care, vol. 27, no. 7, pp. 1761- 1773, 2004. 

  5. H.S. Kim, K.A. Kim, M.H. Chun et al., "Single use Automatic Lancet to Minimize Pain During Skin Puncture," J. Biomed. Eng. Res., vol. 23, no. 4, pp. 323-327, 2002. 

  6. K.S. Park, and E.J. Cha, "Accuracy Evaluation of the Alternative site Blood Glucose Test Using Error Grid," J. Biomed. Eng. Res., vol. 32, pp. 25-31, 2011. 

  7. O.S. Khalil, "Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium," Diabetes Technol Ther, vol. 6, no. 5, pp. 660-697, 2004. 

  8. A. Sieg, R.H. Guy, and M.B. Delgado-Charro, "Noninvasive and minimally invasive methods for transdermal glucose monitoring," Diabetes Technol Ther, vol. 7, no. 1, pp. 174-97, 2005. 

  9. H.W. Lim, and N.A. Soter, Clinical Photomedicine. New York, 1993, pp. 19-35. 

  10. R.R. Anderson, and J.A. Parrish, "The optics of human skin," J Invest Dermatol, vol. 77, no. 1, pp. 13-19, 1981. 

  11. S.F. Malin, T.L. Ruchti, T.B. Blank et al., "Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy," Clin Chem, vol. 45, no. 9, pp. 1651-1658, 1999. 

  12. S.D. Lee, K.W. Kwon, D.K. Koh et al., "Medical Applications of Near Infrared Spectroscopy and Diffuse Optical Imaging (Review)," J. Biomed. Eng. Res., pp. 89-98, 2008. 

  13. S.J. Yeh, C.F. Hanna, and O.S. Khalil, "Monitoring blood glucose changes in cutaneous tissue by temperature-modulated localized reflectance measurements," Clin Chem, vol. 49, no. 6 Pt 1, pp. 924-934, 2003. 

  14. E.B. Hanlon, R. Manoharan, T.W. Koo et al., "Prospects for in vivo Raman spectroscopy," Phys Med Biol, vol. 45, no. 2, pp. R1-R59, 2000. 

  15. J.L. Lambert, J.M. Morookian, S.J. Sirk et al., "Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy," Journal of Raman Spectroscopy, vol. 33, no. 7, pp. 524-529, 2002. 

  16. J.P. Wicksted, R.J. Erckens, M. Motamedi et al., "Monitoring of aqueous humor metabolites using Raman spectroscopy." vol. 2135, pp. 264-274, 1994. 

  17. S.Y. Wang, C.E. Hasty, P.A. Watson et al.., "Analysis of metabolites in aqueous solutions by using laser Raman spectroscopy," Appl Opt, vol. 32, no. 6, pp. 925-929, 1993. 

  18. G.L. Cote, "Noninvasive and minimally-invasive optical monitoring technologies," J Nutr, vol. 131, no. 5, pp. 1596S- 1604S, 2001. 

  19. R.A. Gabbay, and S. Sivarajah, "Optical coherence tomography- based continuous noninvasive glucose monitoring in patients with diabetes," Diabetes Technol Ther, vol. 10, no. 3, pp. 188-193, 2008. 

  20. K.V. Larin, M.S. Eledrisi, M. Motamedi et al., "Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects," Diabetes Care, vol. 25, no. 12, pp. 2263-2267, 2002. 

  21. R. Rawer, W. Stork, and K.D. Muller-Glaser, "Polarimetric methods for measurement of intra ocular glucose concentration," Biomed Tech (Berl), vol. 47 Suppl 1 Pt 1, pp. 186-188, 2002. 

  22. J. Sandby-Moller, T. Poulsen, and H. C. Wulf, "Influence of epidermal thickness, pigmentation and redness on skin autofluorescence," Photochem Photobiol, vol. 77, no. 6, pp. 616- 620, 2003. 

  23. V.L. Alexeev, S. Das, D.N. Finegold et al., "Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid," Clin Chem, vol. 50, no. 12, pp. 2353- 2360, 2004. 

  24. R. Badugu, J.R. Lakowicz, and C.D. Geddes, "Wavelengthratiometric probes for the selective detection of fluoride based on the 6-aminoquinolinium nucleus and boronic acid moiety," J Fluoresc, vol. 14, no. 6, pp. 693-703, 2004. 

  25. B.S. Sekhon, "Chemical biology: past, present and future.," Current Chemical Biology, vol. 2, no. 3, pp. 278-311, 2008. 

  26. R. Ballerstadt, C. Evans, R. McNichols et al., "Concanavalin A for in vivo glucose sensing: a biotoxicity review," Biosens Bioelectron, vol. 22, no. 2, pp. 275-284, 2006. 

  27. V.M. Monnier, O. Bautista, D. Kenny et al., "Skin collagen glycation, glycoxidation, and crosslinking are lower in subjects with long-term intensive versus conventional therapy of type 1 diabetes: relevance of glycated collagen products versus HbA1c as markers of diabetic complications. DCCT Skin Collagen Ancillary Study Group. Diabetes Control and Complications Trial," Diabetes, vol. 48, no. 4, pp. 870-880, 1999. 

  28. M. Kohl, M. Essenpreis, and M. Cope, "The influence of glucose concentration upon the transport of light in tissue-simulating phantoms," Phys Med Biol, vol. 40, no. 7, pp. 1267- 1287, 1995. 

  29. O. Amir, D. Weinstein, S. Zilberman et al.., "Continuous noninvasive glucose monitoring technology based on "occlusion spectroscopy"," J Diabetes Sci Technol, vol. 1, no. 4, pp. 463-469, 2007. 

  30. R. Weiss, Y. Yegorchikov, A. Shusterman et al.., "Noninvasive continuous glucose monitoring using photoacoustic technology- results from the first 62 subjects," Diabetes Technol Ther, vol. 9, no. 1, pp. 68-74, 2007. 

  31. P. Glikfeld, R.S. Hinz, and R.H. Guy, "Noninvasive sampling of biological fluids by iontophoresis," Pharm Res, vol. 6, no. 11, pp. 988-990, 1989. 

  32. A. Caduff, E. Hirt, Y. Feldman et al., "First human experiments with a novel non-invasive, non-optical continuous glucose monitoring system," Biosens Bioelectron, vol. 19, no. 3, pp. 209-217, 2003. 

  33. A. Tura, "Noninvasive glycaemia monitoring: background, traditional findings, and novelties in the recent clinical trials," Curr Opin Clin Nutr Metab Care, vol. 11, no. 5, pp. 607-612, 2008. 

  34. A. Pfutzner, A. Caduff, M. Larbig et al., "Impact of posture and fixation technique on impedance spectroscopy used for continuous and noninvasive glucose monitoring," Diabetes Technol Ther, vol. 6, no. 4, pp. 435-441, 2004. 

  35. D. Huber, M. Talary, F. Dewarrat et al., "The compensation of perturbing temperature fluctuation in glucose monitoring technologies based on impedance spectroscopy," Med Biol Eng Comput, vol. 45, no. 9, pp. 863-876, 2007. 

  36. M. Gourzi, A. Rouane, R. Guelaz et al., "Study of a new electromagnetic sensor for glycaemia measurement: in vitro results on blood pig," J Med Eng Technol, vol. 27, no. 6, pp. 276-281, 2003. 

  37. M. Gourzi, A. Rouane, R. Guelaz et al.., "Non-invasive glycaemia blood measurements by electromagnetic sensor: study in static and dynamic blood circulation," J Med Eng Technol, vol. 29, no. 1, pp. 22-26, 2005. 

  38. S. Gebhart, M. Faupel, R. Fowler et al., "Glucose sensing in transdermal body fluid collected under continuous vacuum pressure via micropores in the stratum corneum," Diabetes Technol Ther, vol. 5, no. 2, pp. 159-166, 2003. 

  39. J. Burdick, P. Chase, M. Faupel et al., "Real-time glucose sensing using transdermal fluid under continuous vacuum pressure in children with type 1 diabetes," Diabetes Technol Ther, vol. 7, no. 3, pp. 448-455, 2005. 

  40. S. Mitragotri, M. Coleman, J. Kost et al., "Analysis of ultrasonically extracted interstitial fluid as a predictor of blood glucose levels," J Appl Physiol, vol. 89, no. 3, pp. 961-966, 2000. 

  41. H. Chuang, E. Taylor, and T.W. Davison, "Clinical evaluation of a continuous minimally invasive glucose flux sensor placed over ultrasonically permeated skin," Diabetes Technol Ther, vol. 6, no. 1, pp. 21-30, 2004. 

  42. J. Kost, "Ultrasound-assisted insulin delivery and noninvasive glucose sensing," Diabetes Technol Ther, vol. 4, no. 4, pp. 489-497, 2002. 

  43. B.J. Novak, D.R. Blake, S. Meinardi et al., "Exhaled methyl nitrate as a noninvasive marker of hyperglycemia in type 1 diabetes," Proc Natl Acad Sci U S A, vol. 104, no. 40, pp. 15613-15618, 2007. 

  44. T.D. Minh, S.R. Oliver, J. Ngo et al., "Noninvasive measurement of plasma glucose from exhaled breath in healthy and type 1 diabetic subjects," Am J Physiol Endocrinol Metab, vol. 300, no. 6, pp. E1166-E1175, 2011. 

  45. A. Caduff, M. Mueller, A. Megej et al., "Characteristics of a multisensor system for non invasive glucose monitoring with external validation and prospective evaluation," Biosens Bioelectron, vol. 26, no. 9, pp. 3794-3800, 2011. 

  46. A. Caduff, M.S. Talary, M. Mueller et al., "Non-invasive glucose monitoring in patients with Type 1 diabetes: a Multisensor system combining sensors for dielectric and optical characterisation of skin," Biosens Bioelectron, vol. 24, no. 9, pp. 2778-2784, 2009. 

  47. C. Turner, "Potential of breath and skin analysis for monitoring blood glucose concentration in diabetes," Expert Rev Mol Diagn, vol. 11, no. 5, pp. 497-503, 2011. 

  48. I. Harman-Boehm, A. Gal, A.M. Raykhman et al., "Noninvasive glucose monitoring: increasing accuracy by combination of multi-technology and multi-sensors," J Diabetes Sci Technol, vol. 4, no. 3, pp. 583-595, 2010. 

  49. I. Harman-Boehm, A. Gal, A.M. Raykhman et al., "Noninvasive glucose monitoring: a novel approach," J Diabetes Sci Technol, vol. 3, no. 2, pp. 253-260, 2009. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로