$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

소다배소(焙燒) 및 수침출법(水浸出法)에 의한 탈질용(脫窒用) 폐(廢) SCR 촉매(觸媒)로부터 바나듐과 텅스텐 침출(浸出)
Leaching of Vanadium and Tungsten from Spent SCR Catalysts for De-NOx by Soda Roasting and Water Leaching Method 원문보기

資源리싸이클링 = Journal of the Korean Institute of Resources Recycling, v.21 no.6, 2012년, pp.65 - 73  

김혜림 (과학기술연합대학원대학교) ,  이진영 (한국지질자원연구원) ,  김준수 (한국지질자원연구원)

초록
AI-Helper 아이콘AI-Helper

탈질용 선택적 촉매 환원(SCR) 촉매는 화력발전소의 탈질 시스템에서 발생한다. 폐 SCR 촉매로부터 바나듐텅스텐과 같은 유가금속을 회수하기 위한 공정은 소다배소 및 수침출 법으로 이루어진다. 본 연구에 사용된 폐 SCR 촉매는 $V_2O_5$ 1.23 %, $WO_3$ 7.73 %를 함유하고 있다. 소다배소 공정은 바나듐과 텅스텐 화합물을 수용성의 물질로 전환시켜 주는 역할을 하며, 실험은 $Na_2CO_3$ 첨가량 5 당량, 배소온도 $850^{\circ}C$, 배소시간 120 분, 폐촉매 입자크기 $54{\mu}m$의 조건에서 수행하였다. 소다배소 실험 이후 배소산물을 사용하여 수침출 실험을 수행하였다. 침출실험을 위한 배소산물은 $-45{\mu}m$의 입자크기로 분쇄하였으며, 수침출 실험조건은 침출온도 $40^{\circ}C$, 침출시간 30 분, 광액밀도 10 %이다. 소다배소 및 수침출 실험결과, 바나듐 46 %, 텅스텐 92%의 침출율을 얻었다.

Abstract AI-Helper 아이콘AI-Helper

Selective catalytic reduction(SCR) catalysts are obtained from de-NOx system of thermoelectric power plant. A process was developed for valuable metals such as vanadium and tungsten recovery from spent SCR catalyst by using soda roasting followed by water leaching. Spent SCR catalyst having $V_...

주제어

참고문헌 (18)

  1. Pio Forzatti, 2001: Present status and perspectives in de-NOx SCR catalysis, Applied Catalysis A: General, 222, pp. 221-236. 

  2. Yun Chen, et al., 2006: Investigations on the extraction of molybdenum and vanadium from ammonia leaching residue of spent catalyst, Int. J. Miner. Process, 79, pp. 42-48. 

  3. Sang-hee You, 2011: Recycling of the waste TiO2-WO3- V2O5 system honeycombs type SCR catalyste for De- NOx, Gyeongsang National Uni., pp. 1-12, 87-95. 

  4. S.P.Barik, et al., 2012: Direct leaching of molybdenum and cobalit from spent hydrodesulphurization catalyst with sulphuric acid, Hydrometallurgy, 111-112, pp. 46-51. 

  5. Hee Dong Jang, 1995: A Study on the Recovery of the Valuable Metals from VRDS Spent Catalyst, J. of Korean Inst. of Resources Recycling, 4(3), pp. 19-25. 

  6. M.Marafi, A. Stanislaus, 2008: Spent hydroprocessing catalyst management: A review Part . Advances in metal recovery and safe disposal methods, Resources, conservation and Recycling, 53, pp. 1-26. 

  7. B.B.Kar, 2004: Spent catalyst: secondary source for molybdenum recovery, Hydrometallugy, 72, pp. 87-92. 

  8. J.E.Litz, 1981: Solvent extraction of W, Mo and V: similarities and contrasts. In: Extractive Metallurgy of Refractory Metals, The Metallurgical Society of AIME, New York, pp. 69-81. 

  9. Li Xin-sheng, et al., 2011: Oxidation Process of low-grade vanadium slag in presence of $Na_{2}CO_{3}$ , Trans. Nonferrous Met. Soc. China, 21, pp. 1860-1867. 

  10. D.S.Bradbury, 2002: The production of vanadium pentoxide[ C]//Taner M F, Riverros P A, Dutrizac J E, Gattrell M, Perron L. Vanadium-geology, processing and applications: As held at the 41st Annual Conference of Metallurgists of CIM (COM). Montreal: The canadian Institute of Mining, Metallurgy and Petroleum, 2002: 115-130. 

  11. B.D.Pandey, et al., 2001: Processing of Tungsten Preconcentrate from Low Grade ore to Recover Metallic Values, Min. Pro. Ext. Met. Rev., 22, pp. 101-120. 

  12. C.K.Gupta, N.Krishnamurty, 1992: Extractive metallurgy of vanadium, Amsterdam: Elsevier Science Publishers, pp. 203-380. 

  13. G.A.Kolta, 1973: Reactions between sodium carbonate and vanadium pentoxide, Thermochimica Acta, 6, pp. 165-177. 

  14. K.Srinivas, et al., 2000: Studies on the recovery of tungsten from a composite wolframaite-scheelite concentrate, Hydrometallurgy, 58, pp. 43-50. 

  15. Habib Shlewit, Moussa Alibrahim, 2006: Extraction of sulfur and vanadium from petroleum coke by means of salt-roasting treatment, Fuel, 85, pp. 878-880. 

  16. Qiang Guo, 2011: Activation pretreatment of limonitric laterite ores by alkali-roasting method usind sodium carbonate, Minerals Engineering, 24, pp. 825-832. 

  17. G.B.Sadyknov, 2008: Oxidation of Titanium-Vanadium Slags with the Participation of $Na_{2}O$ and Its Effect on the Behavior of Vanadium, Sussian Metallurgy, 6, pp. 449-458. 

  18. Greenwood, N.Norman; A.Earnshaw, 1984: Chemistry of the Elements. Oxford; Pergamon, pp. 1117-19, ISBN 0-08-022057-6. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로