• 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

역 알루미늄 유도 결정화 공정을 이용한 실리콘 태양전지 다결정 시드층 생성

Fabrication of Poly Seed Layer for Silicon Based Photovoltaics by Inversed Aluminum-Induced Crystallization


The formation of high-quality polycrystalline silicon (poly-Si) on relatively low cost substrate has been an important issue in the development of thin film solar cells. Poly-Si seed layers were fabricated by an inverse aluminum-induced crystallization (I-AIC) process and the properties of the resulting layer were characterized. The I-AIC process has an advantage of being able to continue the epitaxial growth without an Al layer removing process. An amorphous Si precursor layer was deposited on Corning glass substrates by RF magnetron sputtering system with Ar plasma. Then, Al thin film was deposited by thermal evaporation. An $SiO_2$ diffusion barrier layer was formed between Si and Al layers to control the surface orientation of seed layer. The crystallinity of the poly-Si seed layer was analyzed by Raman spectroscopy and x-ray diffraction (XRD). The grain size and orientation of the poly-Si seed layer were determined by electron back scattering diffraction (EBSD) method. The prepared poly-Si seed layer showed high volume fraction of crystalline Si and orientation. The diffusion barrier layer and processing temperature significantly affected the grain size and orientation of the poly Si seed layer. The shorter oxidation time and lower processing temperature led to a better orientation of the poly-Si seed layer. This study presents the formation mechanism of a poly seed layer by inverse aluminum-induced crystallization.

참고문헌 (16)

  1. S. Gall, C. Becker, K. Y. Lee, T. Sontheimer and B. Rech, J. Cryst. Growth, 312, 1277 (2010). 
  2. J. Zhao, A. Wang, S. R. Wenham and M. A. Green, in Proceedings of the 13th European Photovoltaic Solar Energy Conference (Nice, France, 23-27 October 1995) p.1566. 
  3. R. B. Bergmann, G. Oswald, M. Albrecht and V. Gross, Sol Energ. Mater. Sol. Cell., 46, 147 (1997). 
  4. K. Ishikawa, M. Ozawa, C. H. Oh and M. Matsumura, Jpn. J. Appl. Phys., 37, 731 (1998). 
  5. R. B. Iverson and R. Reif, Mater. Lett., 5(10), 393 (1987). 
  6. O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul and S. R. Wenham, Appl. Phys. Lett., 73(22), 3214 (1998). 
  7. W. J. Hwang, I. S. Kang, S. K. Lim, B. I. Kim, J. M. Yang, C. W. Ahn and S. K. Hong, Kor. J. Mater. Res., 18(9), 507 (2008) (in Korean). 
  8. S. R. Herd, P. Chaudhari and M. H. Brodsky, J. Non-Cryst. Solids, 7, 309 (1972). 
  9. B. Gorka, P. Dogan, I. Sieber, F. Fenske and S. Gall, Thin Solid Films, 515, 7643 (2007). 
  10. P. Dogan, E. Rudigier, F. Fenske, K. Y. Lee, B. Gorka, B. Rau, E. Conrad and S. Gall, Thin Solid Films, 516, 6989 (2008). 
  11. O. Tuzun, A. Slaoui, C. Maurice and S. Vallon, Appl. Phys. Mater. Sci. Process., 99(1), 53 (2010). 
  12. E. Pihan, A. Focsa, A. Slaoui and C. Maurice, Thin Solid Films, 511-512, 15 (2006). 
  13. D. Crespo, T. Pradell, N. Clavaguera and M. T. Clavaguera-Mora, Mater. Sci. Eng., 238, 160 (1997). 
  14. O. Nast and S. R. Wenham, J. Appl. Phys., 88, 124 (2000). 
  15. Y. Wada and S. Nishimatsu, J. Electrochem. Soc., 125, 1499 (1978). 
  16. J. Schneiger, J. Kelin, M. Muske, A. Schöpke, S. Gall and W. Fuhs, in Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion (Osaka, Japan, May 2003) p.106. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일