$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 섬강 수계에서 하천 형태복잡도와 토지이용, 수질 및 부착규조류 군집 분포와의 관계
Relation of Stream Shape Complexity to Land Use, Water Quality and Benthic Diatoms in the Seom River Watershed 원문보기

한국하천호수학회지= Korean journal of limnology, v.45 no.1, 2012년, pp.110 - 122  

민한나 (건국대학교 환경과학과) ,  김난영 (건국대학교 환경과학과) ,  김미경 (건국대학교 환경과학과) ,  이상우 (건국대학교 환경과학과) ,  황길순 ((주)한라기술연구소) ,  황순진 (건국대학교 환경과학과)

초록
AI-Helper 아이콘AI-Helper

본 연구는 섬강 수계 하천에서 하천의 형태복잡도와 부착규조류 군집 분포와의 관계를 자연지리, 토지이용도, 수리, 수질요인들과의 관계를 통해 분석하였다. 하천의 형태복잡도는 하천의 입지(고도)와 하폭 그리고 주변의 토지이용도와 밀접한 관계를 나타냈으며, 동시에 하천의 수질과도 유의한 관계를 보여주었다. 즉, 형태복잡도가 높은 하천은 숲과 농경지의 이용도가 높았으며, 반면 형태복잡도가 낮은 하천에서는 도시 이용도가 높게 나타났다. 한편, 형태복잡도가 높을수록 하천의 영양염의 농도가 낮은 결과를 나타냈다. 섬강 수계에서 출현한 부착규조는 총 145 분류군(2목 3아목 8과 26속 125종 15변종 2품종 3아종)이 출현하였다. 하천의 형태복잡도 차이에 관계없이 부착규조류 군집의 종조성과 우점종의 차이는 크지 않았으나 밀도와 지표종의 차이는 뚜렷하게 나타났다. 부착규조류 지표종은 낮은 형태복잡도를 가진 지점들에서 호오탁성종의 상대밀도가 높았던 반면, 복잡도가 높은 지점들에서는 호청수성종의 종수와 상대밀도가 더욱 높았다. 부착규조류 생물지수(TDI, DAIpo)를 이용해 생물학적 수질을 평가한 결과 형태복잡도가 낮은 지점들에서의 수질이 상대적으로 불량하게 나타났다. 특히, BOD, TP, $PO_4$-P 농도는 DAIpo와 높은 상관관계를 나타냈다. 결론적으로, 섬강 수계 하천의 형태복잡도는 부착조류 군집의 분포와 밀접한 관계를 보여주었으며, 보다 직접적으로 이들의 관계는 형태복잡도의 차이를 결정짓는 주변 토지이용의 형태가 하천수질에 영향을 미쳐 나타난 것으로 이해되었다.

Abstract AI-Helper 아이콘AI-Helper

This study examined the benthic diatom community distribution, land cover/use and water quality in relation to stream shape complexity (SSC) in the Seom River watershed. SSC showed a significant relation to the riparian land cover/use pattern and also water quality variables of the studied streams. ...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구는 하천의 형태복잡도가 하천 수중에 서식하는 부착규조류 군집에 미치는 영향을 이해하고자 수행하였으며 이를 위해, (1) 하천의 하안 형상을 프랙탈 기하학을 이용하여 형태복잡도로 나타내었고, (2) 형태복잡도 차이에 따른 토지이용 및 환경요인과의 상관관계를 분석하였으며, (3) 형태복잡도별로 부착규조류 군집 분포의 특성과 생물학적 수질 상태를 분석하였다.

가설 설정

  • 이러한 가장자리의 에너지 및 물질에 대한 조절효과는 가장자리의 투과성과 흐름의 속성에 의해 결정된다(Wiens, 1992; Forman, 1995; Cadenasso and Pickett, 2000). 유역에서 유출되는 토지이용의 잔류 물질이 수리∙수문학적 흐름에 의해 하천에 유입된다고 가정하면, 이러한 흐름은 하천의 형태복잡도(stream shape complexity) 및 하천 내의 생물의 구성과 수생태계에 영향을 미칠 것이다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
하천의 형태복잡도와 관계를 보여주는 것은 어떤 것이 있을까요? 본 연구는 섬강 수계 하천에서 하천의 형태복잡도와 부착규조류 군집 분포와의 관계를 자연지리, 토지이용도, 수리, 수질요인들과의 관계를 통해 분석하였다. 하천의 형태복잡도는 하천의 입지(고도)와 하폭 그리고 주변의 토지이용도와 밀접한 관계를 나타냈으며, 동시에 하천의 수질과도 유의한 관계를 보여주었다. 즉, 형태복잡도가 높은 하천은 숲과 농경지의 이용도가 높았으며, 반면 형태복잡도가 낮은 하천에서는 도시 이용도가 높게 나타났다.
형태복잡도에 따라 종의 분포에 차이는 어떤 것이 있나요? 6). 즉, 형태복잡도가 낮은 하천 지점들에서는 호오탁성종 출현 비율이 높게 나타난 반면, 형태복잡도가 높은 지점들에서는 호청수성종의 수 및 상대밀도가 높게 나타났다(Table 2). 또한 부착규조류를 이용한 생물지수 TDI, DAIpo를 복잡도별로 비교해 볼 때, HSC 및 MSC유형의 하천보다 LSC하천에서 수질이 더 악화된 결과를 나타냈다.
프랙탈 기하학은 무슨 방법론인가요? 프랙탈 기하학은 실제 세계를 순수 수학의 틀로 추상하는 것이 아니라 불규칙적이고 무질서한 것으로 보이는 현상에 대한 질서와 규칙성을 이해하는 하나의 방법론이다. Tarboton et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (57)

  1. APHA. 1995. Standard methods for the examination of water and wastew ter, 18th Ed. American Public Health Association. 

  2. Bak, P. and K. Sneppen. 1993. Punctuated equilibrium and criticality in a simple model of evolution. Physics Review Letter 71: 4083-4086. 

  3. Cadenasso, M.L. and S.T.A. Pickett. 2000. Linking forest edge structure to edge function: mediation of herbivore damage. Journal of Ecology 88: 31-44. 

  4. Center for Aquatic Ecosystem Restoration. 2011. Development of Technology for Creation of Natural Waterfront and Replacement of Artificial Waterfront. Final Report. 

  5. Darby, S. and D. Sear (ed.) 2008. River restoration: Managing the uncertainty in restoring physical habitat. John Wilry & Sons, Ltd. The Atrium, Southern Gate, Chichester, 315 pp. 

  6. Dunne, T. and L.B. Lepold. 1978. Water in environmental planning. W. H. Freeman and Company. Eagleson, P.S. 1970. Dynamic Hydrology, McGraw-Hill. 

  7. Fjerdingstad, E. 1964. Pollution of streams estimated by benthal phytomicro organism. 1. A saprobic system based on communities of organism and ecological factors. Internationale Revue der gesamten Hydrobiologie und Hydrographie 49: 63-131. 

  8. Fore, L.S. and C. Grafe. 2002. Using diatoms to assess the biological condition of large rivers in Idaho (USA). Freshwater Biology 47: 2015-2037. 

  9. Forman, R.T. 1995. Land Mosaics: the Ecology of Landscape and Regions. New York: Cambridge University Press. 

  10. Gomez, N. and M. Licurisi. 2001. The pampean Diatom Index (IDP) for assessment of rivers and streams in Argentina. Aquatic Ecology 35: 173-181. 

  11. Haper, D.M. and W.D.P. Stewat. 1987. The effects of land use upon water chemistry, particularly nutrient enrichment, in shallow lowland lakes; comparative studies of three lochs in Scotland. Hydrobiologia 148: 211-299. 

  12. Horner, R.R. and E.B. Welch. 1981. Stream periphyton development in relation to current velocity and nutrients. Canadian Journal of Fisheries and Aquatic Sciences 38: 449-457. 

  13. Hwang, S.J., N.Y. Kim, D.H. Won, K.K. An, J.K. Lee and C.S. Kim. 2006. Biological assessment of water quality by using epilithic diatoms in major river systems (Geum, Youngsan, Seomjin River), Kore. Journal of Korean Society on Water Quality 22(5): 784-795. 

  14. Hwang, S.J., N.Y. Kim, S.A. Yoon, B.H. Kim, M.H. Park, K.A. You, H.Y. Lee, H.S. Kim, Y.J. Kim, J.H. Lee, O.M. Lee, J.K. Shin, E.J. Lee, S.L. Jeon and H.S. Joo. 2011. Distribution of benthic diatoms in Korean rivers and streams in relation to environmental variables. Annales de Limnologie-International Journal of Limnology. 47: S15-S33. 

  15. Jung, K.W., C.G. Yoon, J.H. Jang and H.C. Kim. 2006. Analysis of land use and pollutant source effect on water quality characteristics of the watershed. Korean Journal of Limnology 39(1): 41-51. 

  16. Kelly, M.G. and B.A. Whitton. 1995. The trophic diatom index: a new index for monitoring eutrophication in river. Journal of Applied Phycology 7: 433-444. 

  17. Kim, K.D. 2003. Determination of endocrine disrupting chemicals in Sum River and Wonju Stream area. Journal of the Korean Society for Environmental Analysis 6: 1-5. 

  18. Kim, K.D., J.B. Seo and Y.C. Seo. 2007. Water quality analysis of Sumgang, Wonjucheon, Maejucheon and their major influents. Journal of the Korean Society for Environmental Analysis 10(4): 191-196. 

  19. Kim, Y.J. 2007. Changes of epilithic diatom communities according to urbanization influence in the Pocheon and Youngpyeong Streams. Korean Journal of Limnology 40(3): 468-480. 

  20. Krammer, K. and H. Lange-Bertalot. 1986. Bacillariophyceae 1. Teil: Naviculaceae. In: Susswasserflora von Mittleuropa, Band 2/1. (Ettl, H., J. Gerloff, H. Heying and D. Mollenhauer, eds.). Gustav Fischer Verlag. Stuttgart. 876pp. 

  21. Krammer, K. and H. Lange-Bertalot. 1988. Bacillariophyceae 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: Susswasserflora von Mittleuropa, Band 2/2. (Ettl, H., J. Gerloff, H. Heying and D. Mollenhauer, eds.). Gustav Fischer Verlag. Stuttgart. 596pp. 

  22. Krammer, K. and H. Lange-Bertalot. 1991a. Bacillariophyceae 3. Teil: Cenrales, Fragilariaceae, Eunotiaceae. In: Susswasserflora vou Mittleuropa, Band 2/3. (Ettl, H., J. Gerloff, H. Heying and D. Mollenhauer, eds). Gustav Fischer Verlag. Stuttgart. 576pp. 

  23. Krammer, K. and H. Lange-Bertalot. 1991b. Bacillariophyceae 4. Teil: Achnanthaceae Kritische Eraganzungen zu Navicula (Lineolatae) und Gomphonema. In: Susswasserflora von Mittleuropa, Band 2/4. (Ettl, H., J. Gerloff, H. Heying and D. Mollenhauer, eds). Gustav Fischer Verlag. Stuttgart. 437pp. 

  24. Lamberti, G.A. 1993. Grazing experiments in artificial streams. Journal of the North American Benthological Society 12: 337-343. 

  25. Lange-Bertalot, H. 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia 64: 258-304. 

  26. Lee, S.W., H.J. Chang and S.K. Kang. 2000. Fractal appraoches to ecological and limnological phenomena. Korean Journal of Limnology 33(2): 69-79. 

  27. Lee, S.W. and S.J. Hwang. 2007. Investigation on the relationship between land use and water quality with spatial dimension, reservoir type and sahpe complexity. Journal of Korean Institute of Landscape Architecture 34(6): 1-9. 

  28. Leland, H.V. and S.D. Porter. 2000. Distribution of benthic algae in the upper Illinois River basin in relation to geology and land use. Freshwater Biology 44: 279-301. 

  29. Lenoir, A. and M. Coste. 1996. Development of a Practical Diatom Index of Overall water Quality Applicable to the French National Water Board network. Use of Algae for Monitoring Rivers (Whitton, B.A. and E. Rott, eds.). Proceedings of an International Symposium. Inbruck, Austria, p. 29-45. 

  30. Liboriuseen, L., E. Jeppesen, M.E. Bramm and M.F. Lassen. 2005. Periphyton-macroinvertebrate interactions in light and fish manipulated enclosures in a clear and a turbid shallow lake. Journal of Aquatic Ecology 39: 23-39. 

  31. McGarigal, K. and B.J. Marks. 1995. FRAGSTATS; Spatial Pattern Analysis Program for Quantifying Landscape Structure. General Technical Report PNW-GTR-351. Porland. OR: USDA Forest. Service, Pacific Northwest Research Station. 

  32. McHarg, I. 1969. Design with nature. Garden City, New York. Doubleday/Natural Press. 

  33. MOE/NIER. 2007. Final report of survey and evalutation of aquatic ecosystem health in Korea. The ministry of Environment/National Institute on Environmental Research, Korea. 

  34. MOE/NIER. 2010. Final report of survey and evalutation of aquatic ecosystem health in Korea. The ministry of Environment/National Institute on Environmental Research, Korea. 

  35. Naiman, R.J., H. Decamps and M.E. McClain. 2005. Riparia: Ecology, conservation, and management if streamside communities. Elsevier, Amsterdam. 430 pp. 

  36. Newall, P. and C.J. Walsh. 2005. Response of epilithic diatom assemblages to urbanization influences. Hydrobiologia 532: 53-67. 

  37. Patrick, R. and C.W. Reimer. 1966. The diatoms of the United States, exclusive of Alaska and Hawaii. Volume 1: Fragilariaceae, Eunotiaceae, Achnantheceae, Naviculaceae. Academy of natural sciences of Philadelphia, Philadelphia. 

  38. Reynolds, C.S. 2006. The ecology of Phytoplankton. Cambridge University press. UK. 

  39. Rodriguez-Iturbe, I., M. Marani, R. Rigion and A. Rinaldo. 1994. Self-organized river basin landscapes: fractal and multifractal characteristics. Water Resources Research 30: 3531-3539. 

  40. Roy, A.H., A.D. Rosemond, M.J. Paul, D.S. Leigh and J.B. Wallace. 2003. Stream macroinvertebrate response to catchment urbanization (Geogia, USA). Freshwater Biology 48: 329-346. 

  41. Schlosser, I.J. 1982. Fish community structure and functon along two habitat gradients in a headwater stream. Ecological Monographs 52: 395-414. 

  42. Sponseller, R.A., E.F. Benfield and H.M. Valett. 2001. Relationships between land use, spatial scale and stream macroinvertebrate communities. Freshwater Biology 46: 1409-1424. 

  43. Stevenson, R.J. 1997. Scale-dependent causal framework and the consequences of benthic algal heterogenity. Journal of the North American Benthological Society 16: 248-262. 

  44. Stevenson, R.J., C.G. Peterson and D.B. Kirschtel. 1991. Density-dependent growth, ecological strategies, and effects of nutrients and shading on benthic diatom suc-cession in streams. Journal of the Phycology 27: 59-69. 

  45. Stepenuck, K.F., R.L. Crunkilton and L. Wang. 2002. Impacts of urban land use on macroinvertebrate communities in southeastern Wisconsin streams. Water Research 38: 1041-1051. 

  46. Suh, J.H., Y.B. Cho and J.G. Lee. 2002. A study on the analysis of landscape preference in the rural-landscape by index of shape -the case of rural culture village. Journal of the Korean Forest Society 6(2): 7-104. 

  47. Taboton, D.G., R.L. Bras and I. Rodriguez-Iturbe. 1988. The fractal nature of river networks. Water Research 24: 1317-1322. 

  48. Tong, S.T.Y. and W. Chen. 2002. Modeling the relationship between land use and surface water quality. Journal of Environmental Management 66(4): 377-393. 

  49. US EPA. 2002. Biological assessments and criteria: crucial components of water qualiy programs. EPA 822-F-02-006., Washington D.C. USA. 

  50. Van Nieuwenhuyse, E.E. and J.R. Jones. 1966. Phosphoruschlorophyll relationship in temperate streams and its variation with stream catchment area. Canadian Journal of Fisheries and Aquatic Sciences 53: 99-105. 

  51. Vannote, R.L, G.W. Minshall, K.W. Cummis, J.R. Sedell and C. Cushing. 1980. The river cintinuum concept. 1. Canadian Journal of Fisheries and Aquatic Sciences 37: 130-137. 

  52. Walsh, C.J., A.K. Sharpe, P.F. Breen and J.A. Sonneman. 2001. Effect of urbanization on streams of the Melbourne region, Victoria, Austrailia. I. Benthic macroinvertebrate communities. Freshwater Biology 46: 535-551. 

  53. Watanabe, T. 1977. Water pollution of Lanzaki river on Osaka prefecture and the diatom flora of the bottom mud on the river bed. Nara. Hydrobiologia 6: 25-27. 

  54. Watanabe, T. and K. Asai. 1990. Numerical simulation using diatom assemblage of organic pollution in stream and lakes. The Review of Inquiry and Research 52: 99-139. 

  55. Wiens, J.A. 1992. Ecological flows across landscape boundaries: a conceptual overview. In A.J. Hansen and F. di Castri, eds., Landscape Boundaries: Consequences for Biotic Diversity and Ecological Flows. New York: Springer Verlag, 217-235. 

  56. Yamamoto, K. 1944. The plankton of Tenti and Santien of Mt. Hakuto. Japanese Journal of Limnology 13: 167-170. 

  57. Yoon, S.A., N.Y. Kim, B.H. Kim and S.J. Hwang. 2010. Effects of an inflowing urban stream (Wonju stream) on epilithic diatom assemblages in the lower Seom River. Korean Journal of Limnology 43(2): 232-241. 

저자의 다른 논문 :

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로