$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 $H_2O_2$와 rose bengal로 처리된 HaCaT 세포에 있어서 isoquercitrin의 세포 보호 효과를 조사하였다. Isoquercitrin의 피부 전달시스템으로 에토좀 및 탄성 리포좀을 제조하고 입자크기, 포집효율 및 피부 흡수 증진 능력을 평가하였다. Isoquercitrin은 HaCaT 세포에 대해 50 ${\mu}M$의 농도에서 독성을 나타내지 않았다. 5 mM의 $H_2O_2$ 및 25 ${\mu}M$의 rose bengal로 HaCaT 세포를 처리하였을 때 isoquercitrin은 산화적 손상에 대항하여 농도 의존적(6.25 ~ 50 ${\mu}M$)으로 세포 보호 효과를 나타내었다. 0.03 % Isoquercitrin을 담지한 에토좀의 입자 크기는 222.85 nm, 포집효율은 82.26 %였다. 0.03 % isoquercitrin 함유 에토좀은 제조 후 2주일 동안 안정하였고, 일정한 입자 크기를 유지하였다. 피부 투과 실험 결과 에토좀은 일반 리포좀이나 에탄올 용액에서 보다 우수한 피부 투과능을 보여주었다. 0.1 % Isoquercitrin을 담지한 탄성 리포좀의 최적의 제형은 입자 크기(341.2 nm), 가변형성(59.89), 포집효율(54.3 %) 및 피부투과능 (초기 적하량 대비 54.4 %) 확인을 통해 인지질 대 계면활성제의 비율이 85 : 15인 제형이 가장 우수한 탄성 리포좀 제형임을 나타내었다.

Abstract AI-Helper 아이콘AI-Helper

In this study, the cellular protective effect of isoquercitrin against $H_2O_2$ and rose bengal-indued HaCaT cell damage was investigated. The ethosome and elastic liposome for enhanced transdermal delivery were prepared. Particle size, loading efficiency and cumulative permeated amounts ...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
활성산소종이 피부에 과도하게 생성되면 무엇이 파괴되고 붕괴되는가? 1O2 및 ⋅OH 외에도 피부에서 생성되고 피부노화에서 중요한 역할을 하는 활성산소로는 O2∙-, H2O2, ⋅OR 및 ⋅OOR 등이 알려져 있다. 이들 활성산소종이 과도하게 생성되면 피부에 존재하는 효소 및 비효소적 항산화제가 파괴되고 이어 피부 항산화방어망이 붕괴된다. 이러한 산화적 스트레스가 계속되면 세포 및 조직이 손상되고 결과적으로 탄력감소, 주름 및 멜라닌 생성과 같은 피부노화가 가속화된다.
피부에서 활성산소종이 생성될 수 있는 이유는? 이러한 변화는 내인성 노화 과정에서도 나타나지만 광노화에 있어서는 주로 자외선에 의한 피부에서의 반응으로 나타난다[1]. 특히 피부는 신체의 최외각층에 존재하기 때문에 항상 산소와 접촉하고 있고 또한 자외선에 쉽게 노출되어 피부에서는 활성산소종(reactive oxygen species, ROS)이 생성될 수 있다. 활성산소는 피부노화의 주요한 원인 물질로 작용한다.
각질층으로 알려진 피부장벽은 어떤 긍정적, 부정적 역햘을 하는가? 이 중 표피의 가장 바깥쪽에는 각질층으로 알려진 피부장벽이 존재한다. 이는 외부의 자극으로부터 피부 및 신체를 보호하는 중요한 역할을 하는 반면 활성 성분의 피부흡수에 있어 장애요인으로 작용한다. 따라서 피부노화의 지연 및 방지를 위한 효율적인 방안으로써 항산화제를 효과적으로 피부에 침투시키기 위한 방안이 필요하다.
질의응답 정보가 도움이 되었나요?

참고문헌 (40)

  1. H. C. Wulf, J. Sandby-Moller, T. Kobayasi, and R. Gniadecki, Skin aging and natural photoprotection, Micron, 35(3), 185 (2004). 

  2. J. Pincemail, Free radicals and antioxidants in human diseases. In analysis of free radicals in biology systems, ed. A. E. Favier, J. Cadet, B. Kalyanaraman, M. Fontecave, and J.-L. Pierre, 83, Birkhauser Verlag Basel, Switzerland (1995). 

  3. J. R. Kanofsky, H. Hoogland, R. Wever, and S. J. Weiss, Singlet oxygen production by human eosinophils. J. Biol. Chem., 263, 9692 (1988). 

  4. A. Oikarinen, J. Karvonen, J. Uitto, and M. Hannuksela, Connective tissue alterations in skin exposed to natural and therapeutic UV-radiation. Photodermatology, 2, 15 (1985). 

  5. A. Oikarinen and M. Kallioinen, A biochemical and immunohistochemical study of collagen in sunexposed and protected skin. Photodermatology, 6, 24 (1989). 

  6. L. H. Kilgman, UVA induced biochemical changes in hairless mouse skin collagen: A contrast to UVB effects. Biological responses to Ultraviolet A Radiation, ed. F. Urbach, 209 Valdemar, Overland Park (1992). 

  7. K. Scharffetter-Kochanek, Photoaging of the connective tissues of skin: Its prevention and therapy, antioxidants in disease mechanism and therapy. Adv. Pharmacol., 38, 639 (1997) 

  8. K. Scharffetter-Kochanek, M. Wlaschek, K. Briviba, and H. Sies, Singlet oxygen induces collagenase expression in human skin fibroblasts. FEBS Lett., 331, 304 (1993). 

  9. M. Wlaschek, K. Briviba, G. P. Stricklin, H. Sies, and K. Scharffetter-Kochanek, Singlet oxygen may mediate the ultraviolet a induced synthesis of interstitial collagenase, J. Invest. Dermatol., 104, 194 (1995). 

  10. L. Packer, Utraviolet radiation (UVA, UVB) and skin antioxidants, In: Free radical damage and its control, eds. C. A. Rice-Evans and R. H. Burdon, Elsevier Science B.V., 239 (1994). 

  11. K. Scharffetter-Kochanek, Photoaging of the connective tissue of skin: Its prevention and therapy, In: Antioxidants in disease mechanisms and therapy, eds. H. Sies, Advances Pharmacology (1997). 

  12. J. J. Thiele, C. O. Barland, R. Ghadially, and P. M. Elias, Permeability and antioxidant Barriers in aged epidermis, Skin Aging (B. A. Gilchrest, J. Krutman, eds), Springer-Verlag Berlin Heidelberg, Germay, 65 (2006). 

  13. S. N. Park, Skin aging and antioxidants, J. Soc. Cosmet. Scienctists Korea, 23(1), 75 (1997). 

  14. M. Choe, K. C. Han, and H. S. Kim, Incorporation efficiency and stability of antioxidant nutrients entrapped in liposome, Kor. J. Gerontol., 11(1), 21 (2001). 

  15. G. E. El Maghraby, B. W. Carry, and A. C. Williams, Liposome and skin: From drug delivery to model membrane, Eur. J. Parm. Sci., 34(4-5), 203 (2008). 

  16. M. M. A. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, Deformable liposomes and ethosomes: Mechanism of enhanced skin delivery, Int. J. Pharm., 332(1-2), 60 (2007). 

  17. E. Touitou, N. Dayan, L. Bergelson, B. Godin, and M. Eliaz, Ethosomes - novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties, J. Control. Release, 65(3), 403 (2000). 

  18. V. M. Knepp, R. S. Hinz, F. C. Szoka, and R. H. Guy, Controlled drug release from a novel liposomal delivery system. I. Investigation of transdermal potential, J. Control. Release, 5(3), 211 (1988). 

  19. V. M. Knepp, F. C. Szoka, and R. H. Guy, Controlled drug release from a novel liposomal delivery system. II. Transdermal delivery characteristics Original Research Article. J. Control. Release, 12(1), 25 (1990). 

  20. H. J. Gwak and B. S. Jin, Preparation and Characterization of EGCG Entrapped ethosome, J. Korean Ind. Eng. Chem., 18(2), 130 (2007). 

  21. E. Touito, B. Godin, and C. Weiss, Enhanced delivery of drugs into and across the skin by ethosomal carriers, Drug Dev. Res., 50, 406 (2000). 

  22. E. Touito, V. M. Meidan, and E. Horwitz, Methods for quantitative determination of drug localized in the skin, J. Control. Release, 56, 7 (1998). 

  23. V. Dubey, D. Mishra, T. Dutta, M. Nahar, D. K. Saraf, and N. K. Jain, Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposmoes, J. Control. Release, 123, 148 (2007). 

  24. V. Dubey, D. Mishra, and N. K. Jain, Melatonin loaded ethanolic liposomes; Physicochemical characterization and enhanced transdermal delivery, Eur. J. Pharm. Biopharm., 67, 398 (2007). 

  25. P. L. Honeywell-Nguyen, H. W. Wouter Groenink, A. M. de Graaff, and J. A. Bouwstra, The in vivo transport of elastic vesicles into human skin: Effects of occlusion, volume and duration of application. J. Controlled Release, 90, 243 (2003). 

  26. G. Ceve, A. Schatzlein, and H. Richardsen, Ultradeformable lipid vesicles can penetrate the skin and other semipermeable barriers unfragmented. Evidence from double lable CLSM experiments and direct size measurements, Biochim. Biophys. Acta, 1546, 21 (2002). 

  27. Q. Chang, Z. Zuo, M. S. S. Chow, and W. K. Ho, Difference in absorption of the two structurally similar flavonoid glycosides, hyperoside and isoquercitrin, in rats, Eur. J. Pharm. Biopharm., 59(3), 549 (2005). 

  28. C. G. Silva, R. J. Raulino, D. M. Cerqueira, S. C. Mannarino, M. D. Pereira, A. D. Panek, J. F. M. Silva, F. S. Menezes, and E. C. A. Eleutherio ,In vitro and in vivo determination of antioxidant activity and mode of action of isoquercitrin and Hyptis fasciculata, Phytomedicine, 16, 761 (2009). 

  29. H. Inaba, M. Tagashira, D. Honma, T. Kanda, Y. Kou, Y. Ohtake, and A. Amano, Identification of hop polyphenolic components which inhibit prostaglandin E2 production by gingival epithelial cells stimulated with periodontal pathogen. Biol. Pharm. Bull., 31, 527 (2008). 

  30. A. P. Rogerio, A. Kanashiro, C. Fontanari, E. V. G. da Silva, Y. M. Lucisano-Valim, E. G. Soares, and L. H. Faccioli, Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflamm. Res., 56(10), 402 (2007). 

  31. D. Zielinska, W. Wiczkowski, and M. K. Piskula, Determination of the relative contribution of quercetin and its glucosides to the antioxidant capacity of onion by cyclic voltammetry and spectrophotometric methods. J Agric. Food Chem., 56, 3524 (2008). 

  32. J. E. Kim, H. J. Lee, M. S. Lim, M. A. Park, and S. N. Park, Cellular protective effect and liposome formulation for enhanced transdermal delivery of persicaria hydropiper L. Extract, J. Soc. Cosmet. Scientists Kroea, 38(1), 15 (2012). 

  33. Y. P. Fang, Y. H. Tsai, P. C. Wu, and Y. B. Huang, Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy, Int. J. Pharm., 356, 144 (2008). 

  34. D. Paolino, G. Lucania, D. Mardente, F. Alhaique, and M. Fresta, Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers, J. Control. Release, 106, 99 (2005). 

  35. Y. P. Fang, Y. B. Huang, P. C. Wu, and Y. H. Tsai, Topical delivery of 5-aminolevulinic acid-encapsulated ethosomes in a hyperproliferative skin animal model using the CLSM technique to evaluate the penetration behavior, Eur. J. Pharm. Biopharm., 73, 391 (2009). 

  36. B. Mohamed, S. Khaled, and A. O. Abdullah, Influence of the flexible liposomes on the skin deposition of a hydrophilic model drug, carboxyfluorescein: Dependency on their composition, The Scientific World Journal, 2012, 9 (2012). 

  37. A. Gillet, F. Lecomte, P. Hubert, E. Ducat, B. Evrard, and G. Piel, Skin penetration behaviour of liposomes as a function of their composition, Eur. J. Pharm. Biopharm., 79, 43 (2011). 

  38. S. Jain, N. Jain, D. Bhadra, A. K. Tiwary, and N. K. Jain, Transdermal delivery of an analgesic agent using elastic liposomes: Preparation, characterization and performance evaluation, Curr. Drug Delivery, 2, 223 (2005). 

  39. S. D. Maurya, S. Aggarwal, V. K. Tilak, R. C. Dhakar, A. Singh, and G. Maurya, Enhanced transdermal delivery of indinavir sulfate via transfersome, Pharmacie Globale, 1(06) (2010). 

  40. G. Cevc and G. Blume, Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force, Biochim. Biophys. Acta, 1104, 226 (1992). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로