$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

세균의 인산 항상성: 인산 수송 단백질들의 역할
Bacterial Phosphate Homeostasis: Role of Phosphate Transporters 원문보기

Korean journal of microbiology = 미생물학회지, v.48 no.2, 2012년, pp.57 - 65  

박윤미 (조선대학교 치의학전문대학원 미생물학 및 면역학 교실) ,  방일수 (조선대학교 치의학전문대학원 미생물학 및 면역학 교실)

초록
AI-Helper 아이콘AI-Helper

인은 인지질, 탄수화물 및 핵산 등의 생분자 합성에 필요한 원소이다. 세균은 외부환경으로부터 인산이나 인산을 포함하는 영양소를 흡수하여 인을 얻고, 세포대사에 사용되고 남은 인산은 polyphosphate 형태로 저장한다. 현재까지 알려진 다섯 개의 인산 수송 시스템 중, 인산에 특이적으로 높은 친화력을 갖는 Pst 시스템이 가장 중요한 역할을 하며, 그 발현은 세포외부 인산 농도에 반응하는 PhoB-PhoR two component 신호전달 시스템에 의해 조절된다. 반응 조절 단백질 PhoB는 인산 대사뿐 아니라 이와 관계없는 유전자들의 전사를 조절하는 것으로 알려졌으며, 따라서 PhoB의 활성이 조절되지 않으면 많은 종류의 다른 표현형이 나타난다. 본 총설은 각 인산 수송 시스템의 기능이 결여된 세균의 표현형에 대한 최근 연구 결과를 토대로 다음과 같은 내용을 기술하였다. 첫째, 세포 내부 인산의 적정 농도 유지를 위한 인산 수송 시스템들의 역할, 둘째, 인산뿐 아니라 여타 환경 신호와 관련된 수송 시스템의 다양한 표현형, 그리고 마지막으로, 수송 시스템들 간 혹은 그 조절자들 간의 표현형 중복을 분류하여 제시하였다. 이러한 내용은 결국 세균의 대사, 적응반응 및 병원성 발현에 미치는 인산 항상성의 중요성을 강조한다.

Abstract AI-Helper 아이콘AI-Helper

Phosphorous is an essential element for the synthesis of various biomolecules including phospholipids, carbohydrates and nucleic acids. Bacterial cells can uptake it as forms of phosphate and phosphate-containing nutrients from extracellular environments, and reserve extra phosphate to polyphosphate...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • 본 총설은 각 인산 수송 시스템의 기능이 결여된 세균의 표현형에 대한 최근 연구 결과를 토대로 다음과 같은 내용을 기술하였다. 첫째, 세포 내부 인산의 적정 농도 유지를 위한 인산 수송 시스템들의 역할, 둘째, 인산뿐 아니라 여타 환경 신호와 관련된 수송 시스템의 다양한 표현형, 그리고 마지막으로, 수송 시스템들 간 혹은 그 조절자들 간의 표현형 중복을 분류하여 제시하였다. 이러한 내용은 결국 세균의 대사, 적응반응 및 병원성 발현에 미치는 인산 항상성의 중요성을 강조한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
인은 주로 어떤 형태로 세포 내에 흡수되는가? 인(Phosphorus)은 세포를 이루는 원소 중 세 번째로 많은 농도로 존재하는 원소로서 세포 생존에 필수 영양분 중 하나이다. 지구상에서 흔히 발견되며, 주로 무기인산(inorganic orthophosphate; Pi; 이하 Pi로 표기) 형태로 세포 내에 흡수된다. Pi는 세포에 필요한 에너지를 제공하고 세포막의 인지질, 핵산, 단백질 및 당의 생합성에 필수적이며, 인산기(phophoryl group)의 전달을 통해 세포 신호 전달 과정에서도 중요한 역할을 한다.
세균의 Pi 수송은 어떤 것에 의존하는가? 세균의 Pi 수송은 세포막에 존재하는 수송 단백질들의 Pi 유입 및 방출 기능에 의존하는 것으로 알려져 있다. Pi-특이적이며 세포 외부 Pi 농도를 인지하고 발현이 조절되는 high-affinity 수송 시스템인 Pst 시스템, Pi 농도에 관계없이 발현되고 금속이온과 혼합형태로 Pi를 수송하는 Pit 시스템, 유기인산(organic phosphate) 형태의 Pi를 수송하는 GlpT (Glycerol-3-phosphate)와 UhpT (Glucose-6-phosphate) antiporter 수송 시스템 등이 대표적이다.
정상적인 세균의 성장환경에서 무기인산의 공급은 어떤 요소에 영향을 받는가? Pi는 세균의 생존 및 성장에도 필수적이다. 정상적인 세균의 성장환경에서 생합성에 필요한 Pi의 공급은 외부환경의 유용한 Pi의 농도뿐 아니라 pH 및 금속이온 등 Pi 용해도에 영향을 미치는 요소들에 의해 영향을 받고, 좋지 않은 성장환경에서는 생존을 위해 Pi뿐 아니라 Pi를 포함하는 영양소를 세포 내로 흡수해야만 한다. 따라서, 외부환경으로부터 세포 내로 이들 물질을 수송하는 능력은 세균의 성장 및 생존에 필수적이다.
질의응답 정보가 도움이 되었나요?

참고문헌 (101)

  1. Aguena, M., Yagil, E., and Spira, B. 2002. Transcriptional analysis of the pst operon of Escherichia coli. Mol. Genet. Genomics 268, 518-524. 

  2. Auesukaree, C., Homma, T., Tochio, H., Shirakawa, M., Kaneko, Y., and Harashima, S. 2004. Intracellular phosphate serves as a signal for the regulation of the PHO pathway in Saccharomyces cerevisiae. J. Biol. Chem. 279, 17289-17294. 

  3. Ault-Riche, D., Fraley, C.D., Tzeng, C.M., and Kornberg, A. 1998. Novel assay reveals multiple pathways regulating stress-induced accumulations of inorganic polyphosphate in Escherichia coli. J. Bacteriol. 180, 1841-1847. 

  4. Baek, J.H., Kang, Y.J., and Lee, S.Y. 2007. Transcript and protein level analyses of the interactions among PhoB, PhoR, PhoU and CreC in response to phosphate starvation in Escherichia coli. FEMS Microbiol. Lett. 277, 254-259. 

  5. Baek, J.H. and Lee, S.Y. 2006. Novel gene members in the Pho regulon of Escherichia coli. FEMS Microbiol. Lett. 264, 104-109. 

  6. Battesti, A., Majdalani, N., and Gottesman, S. 2011. The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 65, 189-213. 

  7. Bauer, K., Benz, R., Brass, J., and Boos, W. 1985. Salmonella typhimurium contains an anion-selective outer membrane porin induced by phosphate starvation. J. Bacteriol. 161, 813-816. 

  8. Beard, S.J., Hashim, R., Wu, G., Binet, M.R., Hughes, M.N., and Poole, R.K. 2000. Evidence for the transport of zinc(II) ions via the pit inorganic phosphate transport system in Escherichia coli. FEMS Microbiol. Lett. 184, 231-235. 

  9. Bhatt, K., Banerjee, S.K., and Chakraborti, P.K. 2000. Evidence that phosphate specific transporter is amplified in a fluoroquinolone resistant Mycobacterium smegmatis. Eur. J. Biochem. 267, 4028- 4032. 

  10. Birkey, S.M., Sun, G., Piggot, P.J., and Hulett, F.M. 1994. A pho regulon promoter induced under sporulation conditions. Gene 147, 95-100. 

  11. Borsetti, F., Toninello, A., and Zannoni, D. 2003. Tellurite uptake by cells of the facultative phototroph Rhodobacter capsulatus is a Delta pH-dependent process. FEBS Lett. 554, 315-318. 

  12. Buckles, E.L., Wang, X., Lockatell, C.V., Johnson, D.E., and Donnenberg, M.S. 2006. PhoU enhances the ability of extraintestinal pathogenic Escherichia coli strain CFT073 to colonize the murine urinary tract. Microbiology 152, 153-160. 

  13. Budin-Verneuil, A., Pichereau, V., Auffray, Y., Ehrlich, D., and Maguin, E. 2007. Proteome phenotyping of acid stress-resistant mutants of Lactococcus lactis MG1363. Proteomics 7, 2038-2046. 

  14. Burall, L.S., Harro, J.M., Li, X., Lockatell, C.V., Himpsl, S.D., Hebel, J.R., Johnson, D.E., and Mobley, H.L. 2004. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect. Immun. 72, 2922-2938. 

  15. Carmany, D.O., Hollingsworth, K., and McCleary, W.R. 2003. Genetic and biochemical studies of phosphatase activity of PhoR. J. Bacteriol. 185, 1112-1115. 

  16. Castaneda-Garcia, A., Rodriguez-Rojas, A., Guelfo, J.R., and Blazquez, J. 2009. The glycerol-3-phosphate permease GlpT is the only fosfomycin transporter in Pseudomonas aeruginosa. J. Bacteriol. 191, 6968-6974. 

  17. Cesselin, B., Ali, D., Gratadoux, J.J., Gaudu, P., Duwat, P., Gruss, A., and El Karoui, M. 2009. Inactivation of the Lactococcus lactis high-affinity phosphate transporter confers oxygen and thiol resistance and alters metal homeostasis. Microbiology 155, 2274-2281. 

  18. Chakraborti, P.K., Bhatt, K., Banerjee, S.K., and Misra, P. 1999. Role of an ABC importer in mycobacterial drug resistance. Biosci. Rep. 19, 293-300. 

  19. Chan, F.Y. and Torriani, A. 1996. PstB protein of the phosphate-specific transport system of Escherichia coli is an ATPase. J. Bacteriol. 178, 3974-3977. 

  20. Chavez, F.P., Mauriaca, C., and Jerez, C.A. 2009. Constitutive and regulated expression vectors to construct polyphosphate deficient bacteria. BMC Res. Notes 2, 50. 

  21. Cheng, C., Tennant, S.M., Azzopardi, K.I., Bennett-Wood, V., Hartland, E.L., Robins-Browne, R.M., and Tauschek, M. 2009. Contribution of the pst-phoU operon to cell adherence by atypical enteropathogenic Escherichia coli and virulence of Citrobacter rodentium. Infect. Immun. 77, 1936-1944. 

  22. Crepin, S., Chekabab, S.M., Le Bihan, G., Bertrand, N., Dozois, C.M., and Harel, J. 2011. The Pho regulon and the pathogenesis of Escherichia coli. Vet. Microbiol. 153, 82-88. 

  23. Critzer, F.J., D'Souza, D.H., Saxton, A.M., and Golden, D.A. 2010. Increased transcription of the phosphate-specific transport system of Escherichia coli O157:H7 after exposure to sodium benzoate. J. Food Prot. 73, 819-824. 

  24. De Groote, V.N., Fauvart, M., Kint, C.I., Verstraeten, N., Jans, A., Cornelis, P., and Michiels, J. 2011. Pseudomonas aeruginosa fosfomycin resistance mechanisms affect non-inherited fluoroquinolone tolerance. J. Med. Microbiol. 60, 329-336. 

  25. Diaz, M., Esteban, A., Fernandez-Abalos, J.M., and Santamaria, R.I. 2005. The high-affinity phosphate-binding protein PstS is accumulated under high fructose concentrations and mutation of the corresponding gene affects differentiation in Streptomyces lividans. Microbiology 151, 2583-2592. 

  26. Esteban, A., Diaz, M., Yepes, A., and Santamaria, R.I. 2008. Expression of the pstS gene of Streptomyces lividans is regulated by the carbon source and is partially independent of the PhoP regulator. BMC Microbiol. 8, 201. 

  27. Ferreira, G.M. and Spira, B. 2008. The pst operon of enteropathogenic Escherichia coli enhances bacterial adherence to epithelial cells. Microbiology 154, 2025-2036. 

  28. Fischer, R.J., Oehmcke, S., Meyer, U., Mix, M., Schwarz, K., Fiedler, T., and Bahl, H. 2006. Transcription of the pst operon of Clostridium acetobutylicum is dependent on phosphate concentration and pH. J. Bacteriol. 188, 5469-5478. 

  29. Fisher, S.L., Kim, S.K., Wanner, B.L., and Walsh, C.T. 1996. Kinetic comparison of the specificity of the vancomycin resistance VanS for two response regulators, VanR and PhoB. Biochemistry 35, 4732-4740. 

  30. Fraley, C.D., Rashid, M.H., Lee, S.S., Gottschalk, R., Harrison, J., Wood, P.J., Brown, M.R., and Kornberg, A. 2007. A polyphosphate kinase 1 (ppk1) mutant of Pseudomonas aeruginosa exhibits multiple ultrastructural and functional defects. Proc. Natl. Acad. Sci. USA 104, 3526-3531. 

  31. Gangaiah, D., Kassem, II, Liu, Z., and Rajashekara, G. 2009. Importance of polyphosphate kinase 1 for Campylobacter jejuni viable-butnonculturable cell formation, natural transformation, and antimicrobial resistance. Appl. Environ. Microbiol. 75, 7838-7849. 

  32. Gebhard, S., Ekanayaka, N., and Cook, G.M. 2009. The low-affinity phosphate transporter PitA is dispensable for in vitro growth of Mycobacterium smegmatis. BMC Microbiol. 9, 254. 

  33. Geiger, O., Rohrs, V., Weissenmayer, B., Finan, T.M., and Thomas- Oates, J.E. 1999. The regulator gene phoB mediates phosphate stress-controlled synthesis of the membrane lipid diacylglyceryl- N,N,N-trimethylhomoserine in Rhizobium (Sinorhizobium) meliloti. Mol. Microbiol. 32, 63-73. 

  34. Gristwood, T., Fineran, P.C., Everson, L., Williamson, N.R., and Salmond, G.P. 2009. The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate. BMC Microbiol. 9, 112. 

  35. Hoffer, S.M., van Uden, N., and Tommassen, J. 2001. Expression of the pho regulon interferes with induction of the uhpT gene in Escherichia coli K-12. Arch. Microbiol. 176, 370-376. 

  36. Hsieh, Y.J. and Wanner, B.L. 2010. Global regulation by the seven-component Pi signaling system. Curr. Opin. Microbiol. 13, 198-203. 

  37. Huang, Y., Lemieux, M.J., Song, J., Auer, M., and Wang, D.N. 2003. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301, 616-620. 

  38. Hulett, F.M., Lee, J., Shi, L., Sun, G., Chesnut, R., Sharkova, E., Duggan, M.F., and Kapp, N. 1994. Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis. J. Bacteriol. 176, 1348-1358. 

  39. Jackson, R.J., Binet, M.R., Lee, L.J., Ma, R., Graham, A.I., McLeod, C.W., and Poole, R.K. 2008. Expression of the PitA phosphate/metal transporter of Escherichia coli is responsive to zinc and inorganic phosphate levels. FEMS Microbiol. Lett. 289, 219-224. 

  40. Jacobsen, S.M., Lane, M.C., Harro, J.M., Shirtliff, M.E., and Mobley, H.L. 2008. The high-affinity phosphate transporter Pst is a virulence factor for Proteus mirabilis during complicated urinary tract infection. FEMS Immunol. Med. Microbiol. 52, 180-193. 

  41. Jahid, I.K., Silva, A.J., and Benitez, J.A. 2006. Polyphosphate stores enhance the ability of Vibrio cholerae to overcome environmental stresses in a low-phosphate environment. Appl. Environ. Microbiol. 72, 7043-7049. 

  42. Kato, J., Yamamoto, T., Yamada, K., and Ohtake, H. 1993. Cloning, sequence and characterization of the polyphosphate kinase-encoding gene (ppk) of Klebsiella aerogenes. Gene 137, 237-242. 

  43. Kim, H.J., Yang, K.Y., Cho, B.H., Kim, K.Y., Lee, M.C., Kim, Y.H., Anderson, A.J., and Kim, Y.C. 2007. Transcript accumulation from the rpoS gene encoding a stationary-phase sigma factor in Pseudomonas chlororaphis strain O6 is regulated by the polyphosphate kinase gene. Curr. Microbiol. 54, 219-223. 

  44. Kim, S.K., Makino, K., Amemura, M., Nakata, A., and Shinagawa, H. 1995. Mutational analysis of the role of the first helix of region 4.2 of the sigma 70 subunit of Escherichia coli RNA polymerase in transcriptional activation by activator protein PhoB. Mol. Gen. Genet. 248, 1-8. 

  45. Kuroda, A., Murphy, H., Cashel, M., and Kornberg, A. 1997. Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli. J. Biol. Chem. 272, 21240-21243. 

  46. Lamarche, M.G. and Harel, J. 2010. Membrane homeostasis requires intact pst in extraintestinal pathogenic Escherichia coli. Curr. Microbiol. 60, 356-359. 

  47. Lamarche, M.G., Kim, S.H., Crepin, S., Mourez, M., Bertrand, N., Bishop, R.E., Dubreuil, J.D., and Harel, J. 2008a. Modulation of hexa-acyl pyrophosphate lipid A population under Escherichia coli phosphate (Pho) regulon activation. J. Bacteriol. 190, 5256-5264. 

  48. Lamarche, M.G., Wanner, B.L., Crepin, S., and Harel, J. 2008b. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32, 461-473. 

  49. Lau, W.T., Howson, R.W., Malkus, P., Schekman, R., and O'Shea, E.K. 2000. Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae, is required for ER exit of the high-affinity phosphate transporter Pho84p. Proc. Natl. Acad. Sci. USA 97, 1107-1112. 

  50. Lemieux, M.J., Huang, Y., and Wang, D.N. 2004. Glycerol-3-phosphate transporter of Escherichia coli: structure, function and regulation. Res. Microbiol. 155, 623-629. 

  51. Li, Y. and Zhang, Y. 2007. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob. Agents Chemother. 51, 2092-2099. 

  52. Luz, D.E., Nepomuceno, R.S., Spira, B., and Ferreira, R.C. 2012. The Pst system of Streptococcus mutans is important for phosphate transport and adhesion to abiotic surfaces. Mol. Oral Microbiol. 27, 172-181. 

  53. Merkel, T.J., Nelson, D.M., Brauer, C.L., and Kadner, R.J. 1992. Promoter elements required for positive control of transcription of the Escherichia coli uhpT gene. J. Bacteriol. 174, 2763-2770. 

  54. Metcalf, W.W. and Wanner, B.L. 1991. Involvement of the Escherichia coli phn (psiD) gene cluster in assimilation of phosphorus in the form of phosphonates, phosphite, Pi esters, and Pi. J. Bacteriol. 173, 587- 600. 

  55. Moberly, J.G., Staven, A., Sani, R.K., and Peyton, B.M. 2010. Influence of pH and inorganic phosphate on toxicity of zinc to Arthrobacter sp. isolated from heavy-metal-contaminated sediments. Environ. Sci. Technol. 44, 7302-7308. 

  56. Monds, R.D., Silby, M.W., and Mahanty, H.K. 2001. Expression of the Pho regulon negatively regulates biofilm formation by Pseudomonas aureofaciens PA147-2. Mol. Microbiol. 42, 415-426. 

  57. Moraleda-Munoz, A., Carrero-Lerida, J., Extremera, A.L., Arias, J.M., and Munoz-Dorado, J. 2001. Glycerol 3-phosphate inhibits swarming and aggregation of Myxococcus xanthus. J. Bacteriol. 183, 6135-6139. 

  58. Morohoshi, T., Maruo, T., Shirai, Y., Kato, J., Ikeda, T., Takiguchi, N., Ohtake, H., and Kuroda, A. 2002. Accumulation of inorganic polyphosphate in phoU mutants of Escherichia coli and Synechocystis sp. strain PCC6803. Appl. Environ. Microbiol. 68, 4107-4110. 

  59. Motomura, K., Hirota, R., Ohnaka, N., Okada, M., Ikeda, T., Morohoshi, T., Ohtake, H., and Kuroda, A. 2011. Overproduction of YjbB reduces the level of polyphosphate in Escherichia coli: a hypothetical role of YjbB in phosphate export and polyphosphate accumulation. FEMS Microbiol. Lett. 320, 25-32. 

  60. Muda, M., Rao, N.N., and Torriani, A. 1992. Role of PhoU in phosphate transport and alkaline phosphatase regulation. J. Bacteriol. 174, 8057 -8064. 

  61. Mudrak, B. and Tamayo, R. 2012. The Vibrio cholerae Pst2 phosphate transport system is upregulated in biofilms and contributes to biofilm-induced hyperinfectivity. Infect. Immun. 80, 1794-1802. 

  62. Nezbedova, S., Bezouskova, S., Kofronova, O., Benada, O., Rehulka, P., Rehulkova, H., Goldova, J., Janecek, J., and Weiser, J. 2011. The use of glass beads cultivation system to study the global effect of the ppk gene inactivation in Streptomyces lividans. Folia Microbiol. (Praha) 56, 519-525. 

  63. O'May, G.A., Jacobsen, S.M., Longwell, M., Stoodley, P., Mobley, H.L., and Shirtliff, M.E. 2009. The high-affinity phosphate transporter Pst in Proteus mirabilis HI4320 and its importance in biofilm formation. Microbiology 155, 1523-1535. 

  64. Oganesyan, V., Oganesyan, N., Adams, P.D., Jancarik, J., Yokota, H.A., Kim, R., and Kim, S.H. 2005. Crystal structure of the "PhoU-like" phosphate uptake regulator from Aquifex aeolicus. J. Bacteriol. 187, 4238-4244. 

  65. Ogawa, N., Tzeng, C.M., Fraley, C.D., and Kornberg, A. 2000. Inorganic polyphosphate in Vibrio cholerae: genetic, biochemical, and physiologic features. J. Bacteriol. 182, 6687-6693. 

  66. Ostrowski, M., Mazard, S., Tetu, S.G., Phillippy, K., Johnson, A., Palenik, B., Paulsen, I.T., and Scanlan, D.J. 2010. PtrA is required for coordinate regulation of gene expression during phosphate stress in a marine Synechococcus. ISME J. 4, 908-921. 

  67. Panhorst, M., Sorger-Herrmann, U., and Wendisch, V.F. 2011. The pstSCAB operon for phosphate uptake is regulated by the global regulator GlxR in Corynebacterium glutamicum. J. Biotechnol. 154, 149-155. 

  68. Park, J.Y. 2010. Phosphate deficiency stress response mediated by Pho regulon in Bacillus subtilis. Kor. J. Microbiol. 46, 113-121. 

  69. Pongprayoon, P., Beckstein, O., Wee, C.L., and Sansom, M.S. 2009. Simulations of anion transport through OprP reveal the molecular basis for high affinity and selectivity for phosphate. Proc. Natl. Acad. Sci. USA 106, 21614-21618. 

  70. Pratt, J.T., Ismail, A.M., and Camilli, A. 2010. PhoB regulates both environmental and virulence gene expression in Vibrio cholerae. Mol. Microbiol. 77, 1595-1605. 

  71. Pratt, J.T., McDonough, E., and Camilli, A. 2009. PhoB regulates motility, biofilms, and cyclic di-GMP in Vibrio cholerae. J. Bacteriol. 191, 6632-6642. 

  72. Price-Carter, M., Fazzio, T.G., Vallbona, E.I., and Roth, J.R. 2005. Polyphosphate kinase protects Salmonella enterica from weak organic acid stress. J. Bacteriol. 187, 3088-3099. 

  73. Rao, N.N., Gomez-Garcia, M.R., and Kornberg, A. 2009. Inorganic polyphosphate: essential for growth and survival. Annu. Rev. Biochem. 78, 605-647. 

  74. Rao, N.N. and Kornberg, A. 1999. Inorganic polyphosphate regulates responses of Escherichia coli to nutritional stringencies, environmental stresses and survival in the stationary phase. Prog. Mol. Subcell. Biol. 23, 183-195. 

  75. Rao, N.N., Liu, S., and Kornberg, A. 1998. Inorganic polyphosphate in Escherichia coli: the phosphate regulon and the stringent response. J. Bacteriol. 180, 2186-2193. 

  76. Reid, A.N., Pandey, R., Palyada, K., Whitworth, L., Doukhanine, E., and Stintzi, A. 2008. Identification of Campylobacter jejuni genes contributing to acid adaptation by transcriptional profiling and genome-wide mutagenesis. Appl. Environ. Microbiol. 74, 1598-1612. 

  77. Richards, G.R. and Vanderpool, C.K. 2012. Induction of the Pho regulon suppresses the growth defect of an Escherichia coli sgrS mutant, connecting phosphate metabolism to the glucose-phosphate stress response. J. Bacteriol. 194, 2520-2530. 

  78. Rifat, D., Bishai, W.R., and Karakousis, P.C. 2009. Phosphate depletion: a novel trigger for Mycobacterium tuberculosis persistence. J. Infect. Dis. 200, 1126-1135. 

  79. Rodriguez-Garcia, A., Barreiro, C., Santos-Beneit, F., Sola-Landa, A., and Martin, J.F. 2007. Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a DeltaphoP mutant. Proteomics 7, 2410-2429. 

  80. Rogge, M.L. and Thune, R.L. 2011. Regulation of the Edwardsiella ictaluri type III secretion system by pH and phosphate concentration through EsrA, EsrB, and EsrC. Appl. Environ. Microbiol. 77, 4293-4302. 

  81. Ruiz, N. and Silhavy, T.J. 2003. Constitutive activation of the Escherichia coli Pho regulon upregulates rpoS translation in an Hfq-dependent fashion. J. Bacteriol. 185, 5984-5992. 

  82. Runyen-Janecky, L.J., Boyle, A.M., Kizzee, A., Liefer, L., and Payne, S.M. 2005. Role of the Pst system in plaque formation by the intracellular pathogen Shigella flexneri. Infect. Immun. 73, 1404-1410. 

  83. Scanlan, D.J., Mann, N.H., and Carr, N.G. 1993. The response of the picoplanktonic marine cyanobacterium Synechococcus species WH7803 to phosphate starvation involves a protein homologous to the periplasmic phosphate-binding protein of Escherichia coli. Mol. Microbiol. 10, 181-191. 

  84. Schurdell, M.S., Woodbury, G.M., and McCleary, W.R. 2007. Genetic evidence suggests that the intergenic region between pstA and pstB plays a role in the regulation of rpoS translation during phosphate limitation. J. Bacteriol. 189, 1150-1153. 

  85. Shi, X., Rao, N.N., and Kornberg, A. 2004. Inorganic polyphosphate in Bacillus cereus: motility, biofilm formation, and sporulation. Proc. Natl. Acad. Sci. USA 101, 17061-17065. 

  86. Slater, H., Crow, M., Everson, L., and Salmond, G.P. 2003. Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol. Microbiol. 47, 303-320. 

  87. Soualhine, H., Brochu, V., Menard, F., Papadopoulou, B., Weiss, K., Bergeron, M.G., Legare, D., Drummelsmith, J., and Ouellette, M. 2005. A proteomic analysis of penicillin resistance in Streptococcus pneumoniae reveals a novel role for PstS, a subunit of the phosphate ABC transporter. Mol. Microbiol. 58, 1430-1440. 

  88. Steed, P.M. and Wanner, B.L. 1993. Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCABphoU operon: evidence of a new role for the PhoU protein in the phosphate regulon. J. Bacteriol. 175, 6797-6809. 

  89. Sultan, S.Z., Silva, A.J., and Benitez, J.A. 2010. The PhoB regulatory system modulates biofilm formation and stress response in El Tor biotype Vibrio cholerae. FEMS Microbiol. Lett. 302, 22-31. 

  90. Sureka, K., Sanyal, S., Basu, J., and Kundu, M. 2009. Polyphosphate kinase 2: a modulator of nucleoside diphosphate kinase activity in mycobacteria. Mol. Microbiol. 74, 1187-1197. 

  91. Surin, B.P., Jans, D.A., Fimmel, A.L., Shaw, D.C., Cox, G.B., and Rosenberg, H. 1984. Structural gene for the phosphate-repressible phosphate-binding protein of Escherichia coli has its own promoter: complete nucleotide sequence of the phoS gene. J. Bacteriol. 157, 772-778. 

  92. Surin, B.P., Rosenberg, H., and Cox, G.B. 1985. Phosphate-specific transport system of Escherichia coli: nucleotide sequence and gene-polypeptide relationships. J. Bacteriol. 161, 189-198. 

  93. Tunpiboonsak, S., Mongkolrob, R., Kitudomsub, K., Thanwatanaying, P., Kiettipirodom, W., Tungboontina, Y., and Tungpradabkul, S. 2010. Role of a Burkholderia pseudomallei polyphosphate kinase in an oxidative stress response, motilities, and biofilm formation. J. Microbiol. 48, 63-70. 

  94. van Veen, H.W. 1997. Phosphate transport in prokaryotes: molecules, mediators and mechanisms. Antonie Van Leeuwenhoek 72, 299-315. 

  95. van Veen, H.W., Abee, T., Kortstee, G.J., Konings, W.N., and Zehnder, A.J. 1994. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli. Biochemistry 33, 1766-1770. 

  96. VanBogelen, R.A., Olson, E.R., Wanner, B.L., and Neidhardt, F.C. 1996. Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. J. Bacteriol. 178, 4344-4366. 

  97. Wanner, B.L. 1996. Phosphorus assimilation and control of the phosphate regulon, pp. 1357-1381. In Neidhardt, F.C., Curtiss, R., III, Ingraham, J.L., Lin, E.C.C., Low, K.B., Jr, Magasanik, (eds.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology Press, Washington, DC, USA. 

  98. Webb, D.C., Rosenberg, H., and Cox, G.B. 1992. Mutational analysis of the Escherichia coli phosphate-specific transport system, a member of the traffic ATPase (or ABC) family of membrane transporters. A role for proline residues in transmembrane helices. J. Biol. Chem. 267, 24661-24668. 

  99. Wu, H.J., Seib, K.L., Srikhanta, Y.N., Edwards, J., Kidd, S.P., Maguire, T.L., Hamilton, A., Pan, K.T., Hsiao, H.H., Yao, C.W., and et al. 2010. Manganese regulation of virulence factors and oxidative stress resistance in Neisseria gonorrhoeae. J. Proteomics 73, 899-916. 

  100. Yuan, Z.C., Zaheer, R., and Finan, T.M. 2005. Phosphate limitation induces catalase expression in Sinorhizobium meliloti, Pseudomonas aeruginosa and Agrobacterium tumefaciens. Mol. Microbiol. 58, 877-894. 

  101. Yuan, Z.C., Zaheer, R., Morton, R., and Finan, T.M. 2006. Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria. Nucleic Acids Res. 34, 2686-2697. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로