$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

PZT 구동 스테이지의 위치 제어 성능 향상을 위한 제어기 설계
Design of a Controller for Enhancing Positioning Performance of a PZT Driven Stage 원문보기

한국생산제조시스템학회지 = Journal of the Korean Society of Manufacturing Technology Engineers, v.21 no.3, 2012년, pp.465 - 472  

박종성 (휴니드) ,  정규원 (충북대학교 기계공학부)

Abstract AI-Helper 아이콘AI-Helper

This paper describes a new robust control algorithm which can be used to enhance the positioning performance of an ultra-precision positioning system. The working table is supported by flexure hinges and moved by a piezoelectric actuator, whose position is measured by an ultra-precise linear encoder...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In this paper a new robust control algorithm was proposed for an ultra high precision stage which have nano meter positioning resolution. In order to design the controller, the system transfer function was modeled roughly and a robust feedback controller with feedforward one was designed and implemented. A series of experiments were conducted in order to find the controller performance.
  • In this paper a new robust control algorithm was proposed for an ultra high precision stage which have nano meter positioning resolution. In order to design the controller, the system transfer function was modeled roughly and a robust feedback controller with feedforward one was designed and implemented.
  • In this paper, a new controller has been designed in order to enhance the position resolution and tracking performance and a series of experiments was conducted with the resulting ultra-precision positioning system. The system, including the actuator, was modeled by a 4th order linear model based upon the frequency response obtained from the sinusoidal input and output.
  • Several weighting functions were selected to satisfy the design specifications and an H∞ controller with a feed-forward compensator was designed.
  • The ultra-precision positioning system used in this paper was composed of three parts; an ultra-precision stage, a PZT piezoelectric actuator and an ultra-precision displacement sensor, used to measure the displacement of the stage. The moving part of the stage is supported by a symmetric double parallelogram mechanism with notched flexural hinges in order to reduce the motion errors caused by the manufacturing process and the installation of the actuator.

이론/모형

  • The H∞ control synthesis via Gamma iteration optimization was executed in order to compute optimum H∞ control laws for a given system, P(s) , via the improved Loop-Shifting two-Riccati formula(20).
  • The H control synthesis via Gamma iteration optimization was executed in order to compute optimum H control laws for a given system, P(s) , via the improved Loop-Shifting two-Riccati formula(20). The numerical calculation is performed using a Matlab function(21). From the results, the cost function Ty1u1 are shown in Fig.
  • In this paper, a new controller has been designed in order to enhance the position resolution and tracking performance and a series of experiments was conducted with the resulting ultra-precision positioning system. The system, including the actuator, was modeled by a 4th order linear model based upon the frequency response obtained from the sinusoidal input and output. Several weighting functions were selected to satisfy the design specifications and an H controller with a feed-forward compensator was designed.
본문요약 정보가 도움이 되었나요?

참고문헌 (21)

  1. Fukukawa, E., and Mizuno, M., 1992, "Piezo-Driven Translation Mechanisms Utilizing Linkages," Int J. Japan Soc. Precision Engineering, Vol. 26, No. 1, pp. 54-59. 

  2. Croft, D., McAllister, D., and Devasia, S., 1998, "Highspeed Scanning of Piezo-probes for Nano-fabrication," Journal of Manufacturing Science and Engineering, Vol. 120, No. 3, pp. 617-622. 

  3. Lee, D. J., Lee, K. N., Park, N. C., and Park, Y. P., 2005, "Development of 3-axis Nano Stage for Precision Positioning in Lithography System," Proc of the IEEE Int. Conference on Mechatronics and Automation, pp. 1598-1603. 

  4. Scire, F. E., and Teague, E., 1978, "Piezodriven 50- $\mu m$ Range Stage with Subnanometer Resolution," Rev. Sci. Instrum., Vol. 49, No. 12, pp. 1735-1740. 

  5. Adriaens, H. J. M. T. A., and Koning, W. L., Banning, R., 2000, "Modeling Piezoelectric Actuators," IEEE/ASME Trans on Mechatronics, Vol. 5, No. 4, pp. 331-341. 

  6. Yang, S., and Huang, W., 1995, "Dynamic Analysis of Piezoelectric Elements," Rev. Sci. Instrum., Vol. 66, No. 8, pp. 4157-4160. 

  7. Goldfarb, M., and Celanovic, N., 1997, "Modeling Piezoelectric Stack Actuators for Control of Micromanipulation," IEEE Control Systems, Vol. 17, No. 3, pp. 69-79. 

  8. Elka, E., Elata, D., and Abramovich, H., 2004, "The Electromechanical Response of Multilayered Piezoelectric Structures," Journal of Microelectromechanical Systems, Vol. 13, No. 2, pp. 332-341. 

  9. Lerch, R., 1990, "Simulation of Piezoelectric Devices by Two- and Three-dimensional Finite Elements," IEEE Trans. of Ultrasonics, Ferroelectrics and Frequency Control, Vol. 37, No. 2, pp. 233-247. 

  10. Ge, P., and Jouaneh, M., 1996, "Tracking Control of a Piezoceramic Actuator," IEEE Trans. on Control Systems Technology, Vol. 4, No. 3, pp. 209-216. 

  11. Jung, S. N., and Kim, S. W., 1994, "Improvement of Scanning Accuracy of PZT Piezoelectric Actuators by Feed-forward Model-reference Control," Precision Engineering, Vol. 16, No. 1, pp. 49-55. 

  12. Li, C. J., Beigi, H. S. M., Li, S., and Liang J., 1993, "Nonlinear Piezo-actuator Control by Learning Self-tuning Regulator," Journal of Dynamic Systems, Measurement, and Control, Vol. 115, pp. 720-723. 

  13. Chen, B. M., Lee, T. H., Hang, C. C. , Guo, Y., and Weerasooriya, S., 1999, "An $H_{{\infty}}$ Almost Disturbance Decoupling Robust Controller Design for a Piezoelectric Bimorph Actuator with Hysteresis," IEEE Trans. on Control Systems Technology, Vol. 7, No. 2, pp. 160-174. 

  14. Schitter, G., 2004, Stemmer, A., and Allgower, F., 2004, "Robust Two-degree of Freedom Control of an Atomic Force Microscope," Asian Journal of Control, Vol. 6, No. 2, pp. 156-163. 

  15. Kusakabe, C., Tomikawa, Y., and Takano, T., 1990, "High-speed Actuation of a Piezoelectric Actuator by Pulse Driving and Stopping of its Residual Mechanical Vibration," IEEE Trans. of Ultrasonics Ferroelectrics and Frequency Control, Vol. 137, No. 6, pp. 551-557. 

  16. Piezosystem Jena, Instruction Manual of Piezo electrical actuator. 

  17. Park, J. S., and Jeong, K. W., 2006, "Robust Control for a Ultra-precision Stage System," Trans of the KSME (A), Vol. 30, No. 9, pp. 1094-1101. 

  18. Jeong, K. W., and Park, J. S., 2009, "Tracking Performance Enhancement of a Nano Resolution Stage," Proce. of 2009 KSMTE Fall conference, pp. 374-379. 

  19. Park, J. S., 2008, Dynamic Characteristic Analysis and Robust Controller Design of an Ultra Precision Stage System, A Thesis for a Doctorate, Chungbuk National University. 

  20. Mackenroth, U., 2004, Robust Control Systems: theory and case studies, Springer, USA. 

  21. Mathworks Inc., Matlab Toolbox, Robust Control Toolbox User's Guide, Mathworks Inc., USA. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로