$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

층 구조를 갖는 강섬유 보강 고강도 콘크리트 보의 충격저항성능 향상
Enhancement of Impact Resistance of Layered Steel Fiber Reinforced High Strength Concrete Beam 원문보기

콘크리트학회논문집 = Journal of the Korea Concrete Institute, v.24 no.4, 2012년, pp.369 - 379  

류두열 (고려대학교 건축사회환경공학부) ,  민경환 (고려대학교 건축사회환경공학부) ,  이진영 (고려대학교 건축사회환경공학부) ,  윤영수 (고려대학교 건축사회환경공학부)

초록
AI-Helper 아이콘AI-Helper

비산물체의 충돌 및 폭발, 테러 등의 극한하중에 의한 구조물의 붕괴는 재산상의 손실뿐만 아니라 다수의 인명피해를 유발한다. 일반적으로 콘크리트는 타 건설재료에 비해 충격 및 폭발 하중에 우수한 저항성능을 지니고 있다고 알려져 있으나, 준-정적(quasi-static)하중과는 달리 높은 변형률 속도를 갖는 극한하중을 고려하지 않고 설계된 기존의 콘크리트 구조물은 예상치 못한 극한하중에 노출될 경우 상당히 위험할 수 있다. 이 연구에서는 콘크리트 보의 충격저항성능을 향상시키기 위해 길이 30 mm의 번들형 양단 hooked type의 강섬유를 전체 부피의 0%에서 1.5%까지 혼입하여 정하중 및 충격하중 휨 실험을 수행하고, 그 성능을 평가하였다. 실험 결과 강섬유의 혼입률을 증가시킬 경우 정하중뿐만 아니라 충격하중에서도 휨강도와 연성 등 휨 저항성능이 크게 향상되는 경향을 보였다. 강섬유를 인장부에 집중적으로 혼입한 층 구조 콘크리트 보의 경우에는 동일한 양의 섬유를 보 전체에 타설한 시편에 비해 휨 저항성능이 향상되는 것으로 나타났다. 또한, 강섬유 보강 콘크리트의 재료적 비선형성을 고려하여 단자유도계(sing degree of freedom, SDOF) 시스템의 해석 알고리즘을 구성하고 실험 결과와 비교하였으며, 비교적 정확하게 최대 처짐을 예측하는 것으로 나타났다.

Abstract AI-Helper 아이콘AI-Helper

The collapse of concrete structures by extreme loads such as impact, explosion, and blast from terrorist attacks causes severe property damage and human casualties. Concrete has excellent impact resistance to such extreme loads in comparison with other construction materials. Nevertheless, existing ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이 연구에서는 강섬유의 혼입률과 혼입 위치에 따른 NC와 SFRC, LC 보의 정하중 및 충격하중하에서의 휨 저항 성능을 실험적으로 평가하였다.

가설 설정

  • 여기서 변환계수는 SDOF 시스템과 실제 구조물의 일과 운동에너지 및 변형에너지가 같다는 조건들에 의해 계산할 수 있으며, 작용하는 외부 하중의 형태와 지점 조건, 부재의 탄성 거동 및 소성 거동에 따른 형상계수(shape function)를 적절히 고려하여 결정할 수 있다.19,20) 이 연구에서는 집중 하중이 작용하는 길이 L의 단순지지보라고 가정하였으며, TM5-130019)에서 제안하고 있는 탄성 및 소성 구간에서의 변환계수를 적용하였다(Table 7).
  • 충격하중에 의한 보의 길이방향 변형률 분포를 측정하기 위해 부재의 중앙을 기준으로 하부면의 한쪽 면에만 표면게이지를 부착하여 변형률 측정을 하였으며(Fig. 3), 반대면은 동일하다고 가정하고 그래프를 도시하였다(Fig. 7).
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
비산물체의 충돌 및 폭발, 테러 등이 일으킬 수 있는 문제는? 비산물체의 충돌 및 폭발, 테러 등의 극한하중에 의한 구조물의 붕괴는 재산상의 손실뿐만 아니라 다수의 인명피해를 유발한다. 일반적으로 콘크리트는 타 건설재료에 비해 충격 및 폭발 하중에 우수한 저항성능을 지니고 있다고 알려져 있으나, 준-정적(quasi-static)하중과는 달리 높은 변형률 속도를 갖는 극한하중을 고려하지 않고 설계된 기존의 콘크리트 구조물은 예상치 못한 극한하중에 노출될 경우 상당히 위험할 수 있다.
콘크리트 보에 번들형 양단 hooked type의 강섬유를 혼입해 꾀할 수 있는 것은? 5%까지 혼입하여 정하중 및 충격하중 휨 실험을 수행하고, 그 성능을 평가하였다. 실험 결과 강섬유의 혼입률을 증가시킬 경우 정하중뿐만 아니라 충격하중에서도 휨강도와 연성 등 휨 저항성능이 크게 향상되는 경향을 보였다. 강섬유를 인장부에 집중적으로 혼입한 층 구조 콘크리트 보의 경우에는 동일한 양의 섬유를 보 전체에 타설한 시편에 비해 휨 저항성능이 향상되는 것으로 나타났다.
콘크리트의 특징은? 비산물체의 충돌 및 폭발, 테러 등의 극한하중에 의한 구조물의 붕괴는 재산상의 손실뿐만 아니라 다수의 인명피해를 유발한다. 일반적으로 콘크리트는 타 건설재료에 비해 충격 및 폭발 하중에 우수한 저항성능을 지니고 있다고 알려져 있으나, 준-정적(quasi-static)하중과는 달리 높은 변형률 속도를 갖는 극한하중을 고려하지 않고 설계된 기존의 콘크리트 구조물은 예상치 못한 극한하중에 노출될 경우 상당히 위험할 수 있다. 이 연구에서는 콘크리트 보의 충격저항성능을 향상시키기 위해 길이 30 mm의 번들형 양단 hooked type의 강섬유를 전체 부피의 0%에서 1.
질의응답 정보가 도움이 되었나요?

참고문헌 (22)

  1. Krauthammer, T., Modern Protective Structures, CRC Press, 2007. 

  2. Malvar, L. J., Crawford, J. E., and Morrill, K. B., "Use of Composites to Resist Blast," Journal of Composites for Construction, Vol. 11, No. 6, 2007, pp. 601-610. 

  3. 류두열, 민경환, 이진영, 윤영수, "섬유 보강재로 외부 보강된 강섬유 보강 콘크리트 슬래브의 충격저항성능 평가," 콘크리트학회 논문집, 24권, 3호, 2012, pp. 293-303. 

  4. 조성훈, 민경환, 김윤지, 윤영수, "CFRP Sheet 및 강섬유로 보강된 RC 보의 충격저항성능 평가," 콘크리트학회 논문집, 22권, 5호, 2010, pp. 719-725. 

  5. 이나현, 김성배, 김장호, 조윤구, "폭발하중을 받는 콘크리트 구조물의 실험적 거동분석: (2) 초고강도 콘크리트 및 RPC 슬래브의 실험 결과," 대한토목학회 논문집, 29 권, 5A호, 2009, pp. 565-575. 

  6. Wu, C., Oehlers, D. J., Rebentrost, M., Leach, J., and Whittaker, A. S., "Blast Testing of Ultra-High Performance Fibre and FRP-Retrofitted Concrete Slabs," Engineering Structures, Vol. 31, No. 9, 2009, pp. 2060-2069. 

  7. Teng, T. L., Chu, Y. A., Chang, F. A, Shen, B. C., and Cheng, D. S., "Development and Validation of Numerical Model of Steel Fiber Reinforced Concrete for High-Velocity Impact," Computational Materials Science, Vol. 42, No. 1, 2008, pp. 90-99. 

  8. Shin, S. K., Kim, J. J. H., and Lim, Y. M., "Investigation of the Strengthening Effect of DFRCC Applied to Plain Concrete Beams," Cement and Concrete Composites, Vol. 11, No. 6, 2007, pp. 465-473. 

  9. Park, K. S., Paulino, G. H., and Roesler, J., "Cohesive Fracture Model for Functionally Graded Fiber Reinforced Concrete," Cement and Concrete Research, Vol. 11, No. 6, 2010, pp. 956-965. 

  10. Shen, B., Hubler, M., Paulino, G. H., and Struble, L. J., "Functionally-Graded Fiber-Reinforced Cement Composite: Processing, Microstructure, and Properties," Cement and Concrete Composites, Vol. 11, No. 6, 2008, pp. 663-673. 

  11. Zhang, J., Leung, C. K. Y., and Cheung, Y. N., "Flexural Performance of Layered ECC-Concrete Composite Beam," Composites Science and Technology, Vol. 11, No. 6, 2005, pp. 1501-1512. 

  12. 민경환, 양준모, 김미혜, 윤임준, 윤영수, "층 구조를 갖는 하이브리드 PVA FRCC RC 보의 충격하중에서의 휨 거동," 한국콘크리트학회 가을학술대회 논문집, 23권, 2호, 2011, pp. 621-622. 

  13. 양준모, 신현오, 민경환, 윤영수, "이질 보강근 및 섬유와 함께 보강된 FRP 보강근 보강 고강도 콘크리트 보의 휨 거동," 콘크리트학회 논문집, 23권, 3호, 2011, pp. 273-280. 

  14. Wang, N., Mindess, S., and Ko, K., "Fibre Reinforced Concrete Beams under Impact Loading," Cement and Concrete Research, Vol. 26, No. 3, 1996, pp. 363-376. 

  15. Ati, C. D. and Karaham, O., "Properties of Steel Fiber Reinforced Fly Ash Concrete," Construction and Building Materials, Vol. 23, No. 1, 2009, pp. 392-399. 

  16. Naaman, A. E. and Reinhardt, H. W., "Proposed Classification of HPFRC Composites Based on their Tensile Response," Materials and Structures, Vol. 39, No. 5, 2006, pp. 547-555. 

  17. Habel, K. and Gauvreau, P., "Response of Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) to Impact and Static Loading," Cement and Concrete Composites, Vol. 30, No. 10, 2008, pp. 938-946. 

  18. CEB-FIP, "Concrete Structures under Impact and Impulsive Loading," Bulletine No. 187, 1988. 

  19. TM5-1300/AFR 88-2/NAVFAC P-39, Structures to Resist the Effects of Accidental Explosions, Joint Departments of the Army, Air Force and Navy Washington, DC, 1990. 

  20. Comert, M. and Ilki, A., "Explosion Performance of a Ball Powder Production Facility," Journal of Performance of Constructed Facilities, ASCE, Vol. 24, No. 4, 2010, pp. 326-336. 

  21. Chopra, A. K., Dynamics of Structures-Theory and Applications to Earthquake Engineering, 2nd Edition, Prentice Hall, 2001. 

  22. Ngo. T., Mendis, P., Gupta, A., and Ramsay, J., "Blast Loading and Blast Effects on Structures-An Overview," Electronic Journal of Structural Engineering, Special Issue: Loading on Structures, 2007, pp. 76-91. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로