$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

ENVIRONMENTAL FATIGUE OF METALLIC MATERIALS IN NUCLEAR POWER PLANTS - A REVIEW OF KOREAN TEST PROGRAMS 원문보기

Nuclear engineering and technology : an international journal of the Korean Nuclear Society, v.45 no.7, 2013년, pp.929 - 940  

Jang, Changheui (Department of Nuclear and Quantum Engineering, KAIST) ,  Jang, Hun (Department of Nuclear and Quantum Engineering, KAIST) ,  Hong, Jong-Dae (Department of Nuclear and Quantum Engineering, KAIST) ,  Cho, Hyunchul (Doosan Heavy Industry and Construction) ,  Kim, Tae Soon (Central Research Institute, KHNP) ,  Lee, Jae-Gon (Central Research Institute, KHNP)

Abstract AI-Helper 아이콘AI-Helper

Environmental fatigue of the metallic components in light water reactors has been the subject of extensive research and regulatory interest in Korea and abroad. Especially, it was one of the key domestic issues for the license renewal of operating reactors and licensing of advanced reactors during t...

주제어

참고문헌 (25)

  1. O.K. Chopra and W.J. Shack, "Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials," NUREG/CR-6909, Argon National Laboratory, USA (2006). 

  2. M. Higuchi, K. Sakaguchi, Y. Nomura, and A. Hirano, "Final Proposal of Environmental Fatigue Life Correction Factor ( $F_{en}$ ) for Structural Materials in LWR Water Environment.", Proc. of Pressure Vessel and Piping (PVP2007), San Antonio, Texas, USA, July 22 - 26, 2007. 

  3. ASME, ASME Boiler and Pressure Vessel Code III Division 1, The American Society of Mechanical Engineers (1989). 

  4. O.K. Chopra, "Effect of LWR Coolant Environments on Fatigue Design Curves of Austenitic Stainless Steels," NUREG/CR-5704, Argon National Laboratory, USA (1999). 

  5. US NRC, 2007, Regulatory Guide 1.207, March. 

  6. C. Jang and I.S. Jeong, "Lifetime Evaluation and Aging Management Program for Kori Unit 1 Reactor Pressure Vessel," TM.97NJ26.P2001.306, KEPRI, Korea (2001) 

  7. H. Jang, J.H. Kim, C. Jang, J.G. Lee, and T.S. Kim, "Low-Cycle Fatigue Behaviors of Two Heats of SA508 Gr.1a Low Alloy Steel in $310\;^{\circ}C$ Air and Deoxygenated Water-Effects of Dynamic Strain Aging and Microstructures," Mater. Sci. and Eng. A, 580, 41(2013) 

  8. H. Jang, H. Cho, C. Jang, T.S. Kim, and C.K. Moon, "Effect of Cyclic Strain Rate and Sulfides on Environmentally Assisted Cracking Behaviors of SA508 Gr.1a Low Alloy Steel in Deoxygenated Water at $310\;^{\circ}C$ ," Nucl. Eng. and Technol., 40, 225 (2008). 

  9. S.P. Lynch, "Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions," Proc. Int. Conf. Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions, Jackson Lake Lodge, Moran, Wyoming, USA, Sep. 22-26, 2002. 

  10. H.K. Birnbaum, and P. Sofronis, "Hydrogen-Enhanced Localized Plasticity - A Mechanism for Hydrogen-Related Fracture," Mater. Sci. and Eng. A, 176, 191 (1994). 

  11. P. Rodriguez, "Serrated Plastic Flow," Bull. Mater. Sci., 6 653 (1984). 

  12. S.L. Mannan, "Role of Dynamic Strain Aging in Low Cycle Fatigue," Bulletin of Materials Science, 16, 561 (1993). 

  13. R.V. Miner, and M.G. Castelli, "Hardening Mechanisms in a Dynamic Strain Aging Alloy HASTELLOY X during Isothermal and Thermomechanical Cyclic Deformation," Metall. Trans. A, 23A, 551 (1992). 

  14. X. Wu, Y. Katada, S.G. Lee, and I.S. Kim, "Hydrogen-Involved Tensile and Cyclic Deformation Behavior of Low Alloy Pressure Vessel Steel," Metall. Mater. Trans. A, 35A, 1477 (2004). 

  15. S.G. Lee, and I.S. Kim, "Effect of Pre-Charged Hydrogen on Fatigue Crack Growth of Low Alloy Steel at $288\;^{\circ}C$ ," Mater. Sci. and Eng. A, 420, 279 (2006). 

  16. M. Weisse, C.K. Wanmukwamba, H.J. Christ, and H. Mughrabi, "The Cyclic Deformation and Fatigue Behavior of the Low Carbon Steel SAE 1045 in the Temperature Regime of Dynamic Strain Ageing," Acta Metall. Mater., 41, 2227 (1993). 

  17. K. Tsuzaki, Y. Matsuzaki, T. Maki, and T. Tamura, "Fatigue Deformation Accompanying Dynamic Strain Aging in a Pearlitic Eutectoid Steel," Mater. Sci. and Eng. A, 142, 63 (1991). 

  18. S.R. Mediratta, V. Ramaswamy, and P.R. Rao, "Influence of Ferrite-Martensite Microstructural Morphology on the Low Cycle Fatigue of a Dual-Phase Steel," Int. J. of Fatigue, 7, 107 (1985). 

  19. H. Cho, B.K. Kim, I.S. Kim, C. Jang, and D.Y. Jung, "Fatigue Life and Crack Growth Mechanisms of the Type 316LN Austenitic Stainless Steel in $310\;^{\circ}C$ Deoxygenated Water," J. of Nucl. Sci. and Technol., 44, 1007 (2007). 

  20. H. Cho, B.K. Kim, I.S. Kim, and C. Jang, "Low Cycle Fatigue Behaviors of Type 316LN Austenitic Stainless Steel in $310\;^{\circ}C$ Deaerated Water - Fatigue Life and Dislocation Structure Development", Mater. Sci. and Eng. A, 476, 248 (2008). 

  21. K. Tsutsumi, H. Kanasaki, T. Umakoshi, T. Nakamura, S. Urata, H. Mizuta, and S. Nomoto, "Fatigue Life Reduction in PWR Water Environment for Stainless Steels", ASME PVP 410-2, 23 (2000). 

  22. H. Jang, P. Cho, C. Jang, and T.S. Kim, "Environmental Fatigue Behaviors of CF8M Stainless Steel in $310\;^{\circ}C$ Deoxygenated Water - Effect of Hydrogen and Microstructure", Accepted Trans. Korean Soc. Mech. Eng. A, (2013). 

  23. M. Gerland, R. Alain, B. Ait Saadi, and J. Mendez, "Low Cycle Fatigue Behavior in Vacuum of a 316L-type Austenitic Stainless Steel between 20 and $600\;^{\circ}C$ - Part II: Dislocation Structure Evolution and Correlation with Cyclic Behavior," Mater. Sci. & Eng. A, 229, 68 (1997). 

  24. W.A. Van Der Sluys, B.A. Young, and D. Doyle, "Corrosion Fatigue Properties on Alloy 690 and Some Nickel-Based Weld Metals", Assessment Methodologies for Preventing Failure: Service Experience and Environmental Considerations, PVP Vol. 410-2, pp. 85-91, ASME(2000). 

  25. J-D Hong, P Cho, T. S. Kim, Y. S. Lee, C. Jang, "Low cycle fatigue of Alloy 690 and welds in a simulated PWR primary water environment", 2013 Korean Nuclear Society Spring Meeting, Gwangju, Korea, May 30-31,2013. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로