$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

바이오매스 자원을 활용한 바이오폴리올, 바이오이소시아네이트 및 바이오폴리우레탄 제조
Production of Biopolyols, Bioisocyanates and Biopolyurethanes from Renewable Biomass 원문보기

공업화학 = Applied chemistry for engineering, v.24 no.6, 2013년, pp.579 - 586  

조윤주 (경희대학교 공과대학 화학공학과) ,  최성희 (경희대학교 공과대학 화학공학과) ,  이은열 (경희대학교 공과대학 화학공학과)

초록
AI-Helper 아이콘AI-Helper

화석 연료의 고갈 및 온실가스 배출문제로 인해 보다 환경 친화적인 바이오매스 유래의 고분자 생산에 대한 연구가 진행되고 있다. 폴리우레탄은 -OH 화합물과 -NCO 화합물의 중합반응에 의해 생성된 우레탄(-NHCOO-) 결합을 포함하는 고분자 화합물을 통칭하며 자동차, 건축, 화학 분야에서 가장 광범위하게 사용된다. 폴리우레탄의 원료인 폴리올이소시아네이트는 식물성 천연유지, 셀룰로오스, 리그닌 등 재생 가능한 바이오매스로부터 생산이 가능하다. 식물성 천연유지 유래의 바이오폴리올은 이미 상업적 규모로 생산되고 있다. 본 총설은 다양한 바이오매스로부터 바이오폴리올, 바이오이소시아네이트, 이소시아네이트 대체화합물 관련 최신 기술개발 동향 및 이를 기반으로 합성된 바이오폴리우레탄의 특성을 평가하고, 바이오폴리우레탄의 응용분야와 함께 전망을 분석하였다.

Abstract AI-Helper 아이콘AI-Helper

The shortage of fossil fuel and problem of greenhouse gas exhaustion drive the production of biopolymer in a environment-friendly manner. Polyurethane is a polymer formed by reacting an isocyanate (-NCO) with a polyol (-OH) to form urethane link (-NHCOO-). Polyurethane is one of the most widely used...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 최근에는 이러한 문제점들을 해결하기 위하여 식물성 천연 유지를 포함하여 다양한 바이오매스를 활용하여 바이오폴리올 및 바이오이소시아네이트 단량체를 제조하는 기술개발이 활발히 진행되고 있으며, 이들을 이용한 바이오폴리우레탄 합성 기술도 개발되고 있다. 본 총설은 다양한 바이오매스로부터 바이오폴리올, 바이오이소시아네이트, 이소시아네이트 대체화합물 및 바이오폴리우레탄 제조 관련 최신 기술개발 동향을 분석하고, 바이오폴리우레탄의 응용분야와 함께 전망을 분석하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
폴리우레탄은 무엇인가? 폴리우레탄은 6대 합성고분자 중의 하나이며, 물성이 우수하고 적용 분야가 광범위한 플라스틱 제품군으로 바이오매스를 이용한 바이오폴리우레탄 제조 기술 개발이 활발히 진행되고 있다[7]. 폴리우레탄은 폴리올(-OH 화합물)과 이소시아네이트(-NCO 화합물)의 중합반응에 의해 생성된 우레탄(-NHCOO-) 결합을 포함하는 고분자 화합물을 통칭한다(Figure 1). 폴리올로는 프로필렌 옥사이드(propylene oxide, PO) 와 에틸렌 옥사이드(ethylene oxide, EO)가 주로 사용되고 있으며, 이소시아네이트로는 메틸렌 디이소시아네이트(methylene diisocyanate, MDI), 톨루엔 디이소시아네이트(toluene diisocyanate, TDI), 4-40-메틸렌다이사이클로헥실 디이소시아네이트(4-40-methylenedicyclohexyl diisocyanate, hydrogenated MDI), 헥사메틸렌 디이소시아네이트(hexamethylene diisocyanate, HDI) 등이 커플링 에이전트로 사용되고 있다[7,8].
바이오매스를 이용한 연료에 관한 연구개발이 주목 받는 이유는 무엇인가? 신재생에너지로 바이오매스를 이용한 바이오에탄올 또는 바이오디젤 등 바이오연료 및 화합물 제조에 대한 연구개발이 주목을 받고 있다[2]. 이는 바이오매스를 이용한 바이오연료가 교통수송용 연료를 대체 할 가장 현실적이고 경제적인 대안이기도 하고, 바이오연료 외에도 석유화학 산업에 필요한 바이오화합물을 바이오매스로부터 제조할 수 있기 때문이다[3,4]. 전분⋅당질계, 목질계 또는 해조류 등의 바이오매스로부터 화학적 및 생물학적 방법을 이용하여 다양한 platform chemicals을 제조할 수 있으며, 이를 바탕으로 1, 2단계 더 전환시키면 가격경쟁력 있는 범용 화합물을 제조할 수 있을 것으로 기대되고 있다[5].
바이오매스를 이용한 바이오폴리올과 바이오이소시아네이트 제조가 가능할 경우 폴리우레탄 산업의 어떤 문제점을 해결할 수 있는가? 현재 폴리우레탄 산업은 석유에서 유래한 폴리올과 이소시아네이트를 원료로 사용하고 있기 때문에 석유 의존도가 높다는 문제점이 제기되고 있으며 석유 유래의 폴리올과 이소시아네이트가 유가 변화에 따라 가격이 불안정하다는 단점이 있다. 따라서 보다 환경 친화적이며 지속가능한 바이오매스 자원을 이용한 바이오폴리올과 바이오이소시아네이트의 개발 필요성이 증가하고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (53)

  1. R. C. Saxena, D. K. Adhikari, and H. B. Goyal, Biomass-based energy fuel through biochemical routes: a review, Renew. Sust. Energ. Rev., 13, 167 (2009). 

  2. A. Demirbas, Global biofuel strategies, Energy Edu. Sci. Technol., 17, 27 (2006). 

  3. J. Hill, E. Nelson, D. Tilman, S. Polasky, and D. Tiffany, Environmental, economic, and energetic costsand benefits of biodiesel and ethanol biofuels, PNAS, 103, 11206 (2006). 

  4. L. Gouveia and A. C. Oliveira, Microalgae as a raw material for biofuels production, J. Ind. Microbiol. Biotechnol., 36, 269 (2009). 

  5. S. G. Wettstein, D. M. Alonso, E. I. Gurbuz, and J. A. Dumesic, A roadmap for conversion of lignocellulosic biomass to chemicals and fuels, Curr. Opin. Chem. Eng., 1, 218 (2012). 

  6. A. K. Mohanty, M. Misra, and G. Hinrichsen, Biodegradable polymers and biocomposites: an overview, Macromol. Mater. Eng., 276/277, 1 (2000). 

  7. D. P. Pfister, Y. Xia, and R. C. Larock, Recent advances in vegetable oil­based polyurethanes, Chem. Sus. Chem., 4, 703 (2011). 

  8. J. Huang, L. Zhang, H. Wei, and X. Cao, Soy protein isolate/kraft lignin composites compatibilized with methylene diphenyl diisocyanate, J. Appl. Polym. Sci., 93, 624 (2004). 

  9. S. H. Lee and S. Wang, Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent, Compos. Pt. A-Appl. Sci. Manuf., 37, 80 (2006). 

  10. C. K. Lyon, V. H. Garrett, and L. A. Goldblatt, Rigid urethane foams from blown castor oils, J. Am. Oil Chem. Soc., 41, 23 (1964). 

  11. A. Guo, W. Zhang, and Z. S. Petrovic, Structure-property relationships in polyurethanes derived from soybean oil, J. Mater. Sci., 15, 4914 (2006). 

  12. Y. H. Hu, Y. Gao, D. N. Wang, C. P. Hu, S. Zu, L. Vanoverloop, and D. Randall, Rigid polyurethane foam prepared from a rape seed oil based polyol, J. Appl. Polym. Sci., 84, 591 (2002). 

  13. V. B. Veronese, R. K. Menger, M. M. C. Forte, and C. L. Petzhold, Rigid polyurethane foam based on modified vegetable oil, J. Appl. Polym. Sci., 120, 530 (2011). 

  14. M. A. Mosiewicki, G. A. Dell'arciprete, M. I. Aranguren, and N. E. Marcovich, Polyurethane foams obtained from castor oil-based polyol and filled with wood flour, J. Compos. Mater., 43, 3057 (2009). 

  15. H. Deka and N. Karak, Prog. Bio-based hyperbranched polyurethanes for surface coating applications, Org. Coat., 66, 192 (2009). 

  16. A. Kaushik and P. Singh, Synthesis and characterization of castor oil/trimethylol propane polyol as raw materials for polyurethanes using time-of-flight mass spectroscopy, Int. J. Polym. Anal. Charact, 10, 373 (2005). 

  17. M. D. Bhabhe and V. D. Athawale, Chemoenzymatic synthesis of urethane oil based on special functional group oil, J. Appl. Polym. Sci., 69, 1451 (1998). 

  18. C. S. Lee, T. L. Ooi, C. H. Chuah, and S. Ahmad, Rigid polyurethane foam production from palm oil-based epoxidized diethanolamides, J. Am. Oil Chem. Soc., 84, 1161 (2007). 

  19. A. Guo, D. Demydov, W. Zhang, and Z. S. Petrovic, Polyols and polyurethanes from hydroformylation of soybean oil, J. Polym. Environ., 10, 49 (2002). 

  20. Z. S. Petrovic, W. Zhang, and I. Javni, Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis, Biomacromolecules, 6, 713 (2005). 

  21. N. Shiraishi, S. Onodera, M. Ohtani, and T. Masumoto, Dissolution of etherified wood into polyhydric alcohols or bisphenol A and their application in preparing wooden polymeric materials, Mokuzai Gakkaishi, 31, 418 (1985). 

  22. S. Pu and N. Shiraishi, Liquefaction of wood without a catalyst, I.: time course of wood liquefaction with phenols and effects of wood/phenol ratios, Mokuzai Gakkaishi, 39, 446 (1993). 

  23. D. Maldas and N. Shiraishi, Liquefaction of biomass in the presence of phenol and using alkaline and salts as the catalyst, Biomass Bioenerg., 12, 273 (1997). 

  24. M. H. Alma, M. Yoshioka, Y. Yao, and N. Shiraishi, Phenolation of wood using oxalic acid as a catalyst: effect of temperature and hydrochloric acid addition, J. Appl. Polym. Sci., 61, 675 (1996). 

  25. T. Yamada and H. Ono, Rapid liquefaction of lignocellulosic waste by using ethylene carbonate, Bioresour. Technol., 70, 61 (1999). 

  26. S. P. Mun and E. M. Hassan, Liquefaction of lignocellulosic biomass with dioxane/polar solvent mixtures in the presence of an acid catalyst, J. Ind. Eng. Chem., 10, 473 (2004). 

  27. E. M. Hassan and S. P. Mun, Liquefaction of pine bark using phenols and lower alcohols with methane sulfonic acid catalyst, J. Ind. Eng. Chem., 8, 359 (2002). 

  28. Y. Yao, M. Yoshioka, and N. Shiraishi, Rigid polyurethane foams from combined liquefaction mixtures of wood and starch, Mokuzai Gakkaishi, 41, 659 (1995). 

  29. Y. Yao, M. Yoshioka, and N. Shiraishi, Water-absorbing polyurethane foams from liquefied starch, J. Appl. Polym. Sci., 60, 1939 (1996). 

  30. F. Chen and Z. Lu, Liquefaction of wheat straw and preparation of rigid polyurethane foam from the liquefaction products, J. Appl. Polym. Sci., 111, 508 (2009). 

  31. F. Yu, Z. Le, P. Chen, Y. Liu, X. Lin, and R. Ruan, Atmospheric pressure liquefaction of dried distillers grains (DDG) and making polyurethane foams from liquefied DDG, Appl. Biochem. Biotechnol., 148, 235 (2008). 

  32. Y. Yan, H. Pang, X. Yang, R. Zhang, and B. Liao, Preparation and characterization of water-blown polyurethane foams from liquefied cornstalk polyol, J. Appl. Polym. Sci., 110, 1099 (2008). 

  33. E. M. Hassan and N. Shukry, Polyhydric alcohol liquefaction of some lignocellulosic agricultural residues, Ind. Crop. Prod., 27, 33 (2008). 

  34. D. T. Johnson and K. A. Taconi, The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production, Environ. Prog., 26, 338 (2007). 

  35. Y. Wang, J. Wu, Y. Wan, H. Lei, F. Yu, P. Chen, X. Lin, Y. Liu, and R. Ruan, Liquefaction of corn stover using industrial biodiesel glycerol, Int. J. Agric. Biol. Eng., 2, 32 (2009). 

  36. U.S. Patent, 0,054,059 (2011). 

  37. S. Kumar, K. S. Manjula, and Siddaramaiah, Castor oil-based polyurethane-polyester nonwoven fabric composites: mechanical properties, chemical resistance, and water sorption behavior at different temperatures, J. Appl. Polym. Sci., 105, 3153 (2007). 

  38. A. Zlatanic, C. Lava, W. Zhang, and Z. S. Petrovic, Effect of structure on properties of polyols and polyurethanes based on different vegetable oils, J. Polym. Sci. Polym. Phys., 42, 809 (2004). 

  39. S. Hu, C. Wan, and Y. Li, Production and characterization of biopolyols and polyurethane foams from crude glycerol based liquefaction of soybean straw, Bioresour. Technol., 103, 227 (2012). 

  40. G. Cayli and S. Kusefoglu, Biobased polyisocyanates from plant oil triglycerides: Synthesis, polymerization, and characterization, J. Appl. Pol. Sci., 109, 2948 (2008). 

  41. L. Hojabri, H. Kong, and S. S. Narine, Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization, Biomacromolecules, 10, 884 (2009). 

  42. L. Hojabri, X. Kong, and S. S. Narine, Novel long chain unsaturated diisocyanate from fatty acid: synthesis, characterization, and application in bio-based polyurethane, J. Polym. Sci. Polym. Chem., 48, 3302 (2010). 

  43. W. G. Glasser, O. H. H. Hsu, D. L. Reed, R. C. Forte, and L. C. F. Wu, Lignin-derived polyols, polyisocyanates, Urethane Chemistry and Applications, 172, 311, Kenneth N. Edwards Enterprises, United States (1981). 

  44. D. V. Palaskar, A. Boyer, E. Cloutet, C. Alfos, and H. Cramail, Synthesis of biobased polyurethane from oleic and ricinoleic acids as the renewable resources via the AB-type self-condensation approach, Biomacromolecules, 11, 1202 (2010). 

  45. B. Tamami, S. Sohn, and G. L. Wilkes, Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks, J. Appl. Polym. Sci., 92, 883 (2004). 

  46. L. Ubaghs, N. Fricke, H. Keul, and H. Hocker, Rapid communications, polyurethanes with pendant hydroxyl groups: synthesis and characterization, Macromol. Rapid Commun., 25, 517 (2004). 

  47. I. Javni, Z. S. Petrovic, A. Guo, and R. Fuller, Thermal stability of polyurethanes based on vegetable oils, J. Appl. Polym. Sci., 77, 1723 (2000). 

  48. Z. S. Petrovic, M. J. Cevallos, I. Javni, D. W. Schaefer, and R. Justice, Soy-oil-based segmented polyurethanes, J. Polym. Sci. Polym. Phys., 43, 3178 (2005). 

  49. X. Kong, J. Yue, and S. S. Narine, Physical properties of canola oil based polyurethane networks, Biomacromolecules, 8, 3584 (2007). 

  50. A. Terheiden and R. Hubel, Scientific approach to the question 'Why natural oil based polyols affect the physical properties of conventional slabstock foam, Polyurethanes technical conference, American Chemistry Council, 620, American Chemistry Council and Arlington, VA., United States (2010). 

  51. M. Ionescu, Z. S. Petrovic, and X. Wan, Ethoxylated soybean polyols for polyurethanes, J. Polym. Environ., 15, 237 (2007). 

  52. J. S. Ko, J. H. Lee, and K. C. Sung, A Study on the powders for makeup cosmetics, J. Kor. Oil Chem. Soc., 29, 11 (2012). 

  53. K. I. Kim and S. B. Kim, Research trend of bio-Pplyurethane, KIC News, 15, 11 (2012). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로