$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

해양 생태모델링 고찰
A Brief Introduction to Marine Ecosystem Modeling 원문보기

바다 : 한국해양학회지 = The sea : the journal of the Korean society of oceanography, v.18 no.1, 2013년, pp.21 - 31  

김해철 ,  조양기 (서울대학교 지구환경과학부)

초록
AI-Helper 아이콘AI-Helper

생태모델은 생태계 구성 요소간의 관계를 수치적으로 표현하여 생태계 내에 존재하는 다양한 요인들의 시간에 따른 내재적 변동과 외부 조건의 변화에 따른 반응을 예측하는데 유용한 도구다. 해양 생태모델은 학제간 공동 연구결과를 토대로, 보다 체계적이고 종합적인 접근 방법을 통해, 최근 수 십 년 동안 많은 발전을 이룩하였다. 이 글은 해양 생태모델의 이론적 배경을 살피고, 모델 수립 시 고려해야 할 사항 및 최근 동향에 대하여 소개한다.

Abstract AI-Helper 아이콘AI-Helper

Ecosystem models are mathematical representations of underlying mechanistic relationships among ecological components and processes. Ecosystem modeling is a useful tool to visualize inherent complexities of ecological relationships among components and the characteristic variability in ecological sy...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
생태모델이란? 생태모델은 생태계의 구성 요소간의 관계를 미분 방정식을 사용하여 수치적으로 표현한 형태이다. 일반적으로 생태계 구성요소로는 물리, 화학적 환경 요인 및 생물학적 환경 요인 등이 있다.
생태계 구성요소는? 생태모델은 생태계의 구성 요소간의 관계를 미분 방정식을 사용하여 수치적으로 표현한 형태이다. 일반적으로 생태계 구성요소로는 물리, 화학적 환경 요인 및 생물학적 환경 요인 등이 있다. 생태모델은 생태계 내에 존재하는 이러한 다양한 요인들을 상태변수로 간주하여 시간에 따른 상태변수 간의 관계 및 양적 변화를 추정 및 예측하는데 유용한 도구라 할 수 있다.
JGOFS은 어떤 목적으로 만들어졌는가? JGOFS (Joint Global Ocean Flux Study)는 1980년 후반에 시작되어 2000년 초반에 끝난 대표적인 해양 국제협력 프로그램 중하나이다. 이 프로그램은 전지구적 규모의 탄소 및 생명활동과 관련된 원소들의 대기, 해양 및 육상 간의 순환작용을 결정짓는 주요 요인을 파악하고 기후 변화 및 인간활동으로 인해 발생하는 교란이 해양 생지화학적 순환에 어떠한 영향을 미치는 지를 예측하기 위한 목적으로 만들어졌다. 이 프로그램은 해양학의 학제간 결합을 이용한 종합적인 현장 관측 및 실험, 이를 통한 장기 자료의 구축, 또 마지막으로, 이렇게 해서 축적된 결과를 이용한 모델의 개발이라는 체계적인 접근 방법을 채택하여 성공한 대표적인 사례이다.
질의응답 정보가 도움이 되었나요?

참고문헌 (51)

  1. Blower, S. and J. Roughgarden, 1987. Population dynamics and parasitic castration: a mathematical model, American Naturalist, 129: 730-754. 

  2. DeCoursey, D.G. 1992. Developing models with more detail: do more algorithms give more truth? Weed Technology, 6: 709-715. 

  3. Denman, K.L., 1993. Scale-determining biological-physical interactions in oceanic food webs, In: Aquatic Ecology, Pattern and Process, 377-402 pp. 

  4. Denman, K.L. and M.A. Pena, 1999. A coupled 1-D biological/physical model of the northeast subarctic Pacific Ocean with iron limitation. Deep-Sea Research II, 46: 2877?2908. 

  5. Doney, S.C., D.M. Glover and R.G. Najjar, 1996. A new coupled, one-dimensional biological-physical model for the upper ocean: Applications to the JGOFS Bermuda Atlantic Time-series Study (BATS) site. Deep-Sea Research II, 43: 591?624. 

  6. Doney, S.C., J.A. Kleypasa, J.L. Sarmiento and P.G. Falkowski, 2002. The US JGOFS Synthesis and Modeling Project-An introduction. Deep-Sea Research II, 49: 1?20. 

  7. Dugdale, R.C., 1967. Nutrient limitation in the sea: dynamics, identification, and significance. Limnology and Oceanography, 12: 685?695. 

  8. Dugdale, R.C., 1976. Modeling. In: The Sea, 6: 789?806. 

  9. Eigenheer, A., W. Kuhn and G. Radach, 1996. On the sensitivity of ecosystem box model simulations on mixed-layer depth estimates, Deep-Sea Research I, 43: 1011?1027. 

  10. Eppley, R.W., 1972. Temperature and phytoplankton growth in the sea. Fisheries Bulletin, 70: 1063?1085. 

  11. Evans, G.T. and J.S. Parslow, 1985. A model of annual plankton cycles. Biological Oceanography, 3: 327?347. 

  12. Fasham, M.J.R., H.W. Ducklow and S.M. Mckelvie, 1990. A nitrogen based model of plankton dynamics in the oceanic mixed layer, Journal of Marine Research, 48: 591?639. 

  13. Fasham, M.J.R., J. L. Sarmiento, R. D. Slater, H.W. Ducklow and R. Williams, 1993. A seasonal three-dimensional ecosystem model of nitrogen cycling in the North Atlantic euphotic zone: A comparison of the model results with observation from Bermuda Station "S" and OWS "India", Global Biogeochemical Cycles, 7: 417?450. 

  14. Fasham, M.J.R. and G.T. Evans, 1995. The use of optimization techniques to model marine ecosystem dynamics at the JGOFS station at $17^{\circ}N$ $20^{\circ}W$ , Philosophical Transactions of the Royal Society of London, 348: 203?209. 

  15. Fennel, W., 2008. Towards bridging biogeochemical and fish-production models, Journal of Marine Systems, 71: 171?194. 

  16. Franks, P.J.S., J.S. Wroblewski and G.R. Flierl, 1986a. Behavior of a simple plankton model with food-level acclimation by herbivores, Marine Biology, 91: 121?129. 

  17. Franks, P.J.S., J.S. Wroblewski and G.R. Flierl, 1986b. Prediction of phytoplankton growth in response to the frictional decay of a warm-core ring, Journal of Geophysical Research, 91: 7603?7610. 

  18. Franks, P.J.S., 1995. Coupled physical-biological models in oceanography, Review of Geophysics Supplement, July: 1177?1187. 

  19. Franks, P.J.S., 2009. Planktonic ecosystem models: perplexing parameterizations and a failure to fail, Journal of Plankton Research, 31: 1299?1306. 

  20. Freedman, G.I., 1980. Single-species growth, In: Deterministic Mathematical Models in Population Ecology, 3-19 pp. 

  21. Freedman, G.I., 1980. Chapters 3, 4 and 5, In: Deterministic Mathematical Models in Population Ecology, 33-109 pp. 

  22. Friedrichs, M.M., R.R. Hood, J.D. and Wiggert, 2006. Ecosystem model complexity versus physical forcing: Quantification of their relative impact with assimilated Arabian Sea data, Deep-Sea Research II, 53: 576?600. 

  23. Fulton, E.A., A.D.M. Smith and C.R. Johnson,2003. Effect of complexity on marine ecosystem models, Marine Ecology Progress Series, 253: 1?16. 

  24. Horne, J.K. and D.C. Schneider, 1994. Analysis of scale-dependent processes with dimensionless ratios, Oikos, 70: 201?211. 

  25. Hurtt, G.C. and R.A. Armstrong, 1999. A pelagic ecosystem model calibrated with BATS and OWSI data, Deep-Sea Research II, 46: 27-61. 

  26. Ito, S, M.J. Kishi, K. Kurita, Y. Oozeki, Y. Yamanaka, B.A. Megrey and F.E. Werner 2004. A fish bioenergetics model application to Pacific saury coupled with a lower trophic ecosystem model, Fisheries Oceanography, 13(Suppl 1): 111-124. 

  27. Ivelev, V.S., 1955. Experimental ecology of the feeding of fishes, Pischerpromizdat. Moscow. 302pp (translated from the Russian by D. Scott (1969), New Haven, Yale University Press). 

  28. Large, W. G., J. C. McWilliams and S. C. Doney, 1994: Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Review Geophysics, 32: 363?403. 

  29. Lawson, L.M., E.E. Hofmann and Y.H. Spitz, 1996. Time series sampling and data assimilation in a simple marine ecosystem model, Deep Sea Research II, 43: 625?651. 

  30. Lotka, A.J., 1925. Elements of Physical Biology, Williams and Wilkins. 

  31. Martin, J.H. and S.E. Fitzwater, 1988. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic, Nature 331: 341. doi:10.1038/331341a0. 

  32. Matear, R.J., 1995. Parameter optimization and analysis of ecosystem models using simulated annealing: A case study at Station P, Journal of Marine Research, 53: 571?607. 

  33. Malthus, T.R., 1798. An Essay on the Principle of Population. Johnson, London. 

  34. Megrey, B.A., K.A. Rose, R. A. Klumb, D.E. Hay, F.E.Werner, D.L. Eslinger and S.L. Smith 2007. A bioenergetics-based population dynamics model of Pacific herring (Clupea harengus pallasi) coupled to a lower trophic level nutrient-phytoplankton-zooplankton model: description, calibration, and sensitivity analysis, Ecological Modelling, 202: 144-164. 

  35. Michaelis, L. and M. Menten, 1913. Die Kinetik der Invertinwirkung, Biochem. Z., 49: 333?369. 

  36. Mills, E.L., 1989. Disciplined thinking in biological oceanography: phytoplankton dynamics, physical oceanography and Riley's "synthetic method", In: Biological Oceanography, An Early History, 1870?1960, pp. 282-309. 

  37. O'Brien, J.J. and J.S. Wroblewski, 1971. On advection in phytoplankton models, Journal of Theoretical Biology, 38: 197?202. 

  38. Prunet, P., J.F. Minster, V. Echevin and I. Dadou, 1996a. Assimilation of surface data in a one-dimensional physical biogeochemical model of the surface ocean: 1. Adjusting a simple trophic model to chlorophyll, temperature, nitrate, and $pCO_{2}$ data, Global Biogeochemical Cycles, 10: 139?158. 

  39. Prunet, P., J.F. Minster, D. Ruiz-Pino and I. Dadou, 1996b. Assimilation of surface data in a one-dimensional physical biogeochemical model of the surface ocean: 1. Method and preliminary results, Global Biogeochemical Cycles, 10: 111-138. 

  40. Riley, G.A., 1946. Factors controlling phytoplankton populations on Georges Bank, Journal of Marine Research, 6: 54?73. 

  41. Rudstam, L.G., 1988. Exploring the dynamics of herring consumption in the Baltic: applications of an energetic model of fish growth, Kieler Meeresforschung Sonderheft 6: 321-322. 

  42. Spitz, Y.H., J.R. Moisan, M.R. Abott and J.G. Richman, 1998. Data assimilation and a pelagic ecosystem model: Parameterization using time series observations, Journal of Marine System, 16: 51?68. 

  43. Steele, J.H. and M.M. Mullin, 1976. Zooplankton dynamics, In: The Sea, 6: 857?890. 

  44. Steele, J.H. and B.W. Frost, 1977. The structure of plankton communities, Philosophical Transactions of the Royal Society of London, 270: 485?534. 

  45. Vallino, J.J., 2000. Improving marine ecosystem models: Use of data assimilation and mesocosm experiments, Journal of Marine Research, 58: 117?164. 

  46. Verhulst, P.-F., 1838. Notice sur la loi que la population poursuit dans son accroissement. Correspondance mathematique et physique 10: 113-121. Retrieved 09/08/2009. 

  47. Volterra, V., 1926. Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Mem. Acad. Lincei Roma, 2: 31-113. 

  48. Walsh, J.J., 1972. Implications of a systems approach to oceanography. Science, 176: 969?975. 

  49. Wroblewski, J.S., 1977. A model of phytoplankton plume formation during variable Oregon upwelling. Journal of Marine Research, 35: 357?394. 

  50. Wroblewski, J.S. and J.J. O'Brien, 1981. On modeling the turbulent transport of passive biological variables in aquatic ecosystems, Ecological Modelling, 12: 29?44. 

  51. Wroblewski, J.S., 1983. The role of modeling in biological oceanography. Ocean Science and Engineering, 8: 245?285. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로