$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Obesity, obesity-related diseases and application of animal model in obesity research An overview 원문보기

한국유화학회지 = Journal of oil & applied science, v.30 no.4, 2013년, pp.622 - 634  

Park, Byung-Sung (Department of Animal Biotechnology, College of Animal Life Sciences, Kangwon National University) ,  Singh, N.K. (Department of Animal Biotechnology, College of Animal Life Sciences, Kangwon National University) ,  Reza, A.M.M.T. (Department of Animal Biotechnology, College of Animal Life Sciences, Kangwon National University)

Abstract AI-Helper 아이콘AI-Helper

The multi-origin of obesity and its associated diseases made it's a complex area of biomedical science research and severe health disorder. From the 1970s to onwards this health problem turned to an epidemic without having any report of declining yet and it created a red alert to the health sector. ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

성능/효과

  • The dog model of human obesity research could be able to unveil the genetic contribution to the problem [76]. In conclusion, the successful application of animal model in obesity research revealed many unknown question and directed towards the solution of human obesity and it related diseases. It opened the door of discovering many treatments, therapies, cures to get relief of obesity disorders.

후속연구

  • Thus, for the understanding of obesity and its interactions with aging, the small animal models might not give accurate observations. For the proper understanding of the mechanism of obesity and associated diseases in the later stages of life, for having accurate measure to avoid obesity in the old ages, the future research effort should be given to establish an animal model which had comparatively larger life span like human being. In continuation, instead of doing short-term study, it could be recommended to conduct long-term investigation to have a concrete understanding and checklist of safety measures to be taken at different stages of age to avoid the lethal effect of obesity.
  • For the proper understanding of the mechanism of obesity and associated diseases in the later stages of life, for having accurate measure to avoid obesity in the old ages, the future research effort should be given to establish an animal model which had comparatively larger life span like human being. In continuation, instead of doing short-term study, it could be recommended to conduct long-term investigation to have a concrete understanding and checklist of safety measures to be taken at different stages of age to avoid the lethal effect of obesity. Moreover, the role of other genes in terms of obesity should be taken under consideration that might unveil a path to overcome the genetic effect of obesity (obesity derived from different genes inherited from ancestors).
본문요약 정보가 도움이 되었나요?

참고문헌 (76)

  1. P. Kopelman, Health risks associated with overweight and obesity, Obesity Reviews, 8, 13(2007). 

  2. D. P. Guh, W. Zhang, N. Bansback, Z. Amarsi, C. L. Birmingham and A. H. Anis, The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis, BMC Public Health, 9, 88 (2009). 

  3. W. V. Brown, K. Fujioka, P.W. Wilson and K. A. Woodworth, Obesity: why be concerned?, The American Journal of Medicine, 122, 4 (2009). 

  4. Y. Zhang, K. Guo, R. E. LeBlanc, D. Loh, G. J. Schwartz and Y. H. Yu, Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms, Diabetes, 56, 1647 (2007). 

  5. D. B. West, C. N. Boozer, D. L. Moody and R. L. Atkinson, Dietary obesity in nine inbred mouse strains, American Journal of Physiology, 262, 1025 (1992). 

  6. S.W. Keith, D.T. Redden, P.T. Katzmarzyk, M.M. Boggiano, E.C. Hanlon, R.M. Benca, D. Ruden, A. Pietrobelli, J.L. Barger, K.R. Fontaine, C. Wang, L.J. Aronne, S.M. Wright, M. Baskin, N.V. Dhurandhar, M.C. Lijoi, C.M. Grilo, M. Deluca, A.O. Westfall and D.B. Allison, Putative contributors to the secular increase in obesity: exploring the roads less traveled, Int. J. Obes. (Lond.), 30, 1585 (2006) 

  7. B.S. Park, Gamma fatty acid: A Review, J. of the Korean Oil Chemists' Soc, 25, 446 (2008). 

  8. L.A. Tartaglia, M. Dembski and X. Weng, Identification and expression cloning of a leptin receptor, OB-R, Cell, 83, 1263 (1995). 

  9. Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold and J. M. Friedman, Positional cloning of the mouse obese gene and its human homologue, Nature, 372, 425 (1994). 

  10. T.E. Adrian, G.L. Ferri, A.J. Bacarese-Hamilton, H.S. Fuessl, J.M. Polak, S.R. Bloom, Human distribution and release of a putative new gut hormone, peptide YY, Gastroenterology, 89, 1070 (1985). 

  11. I.Y. Kim, C.K. Zhoh, S.R.Han,Y.B. Bang and R.Y.Li, Anti-oxidative Activity and Moisturizing Effect of Fermented Puer Tea Extract, J. of the Korean Oil Chemists' Soc, 30, 272 (2013). 

  12. B.S. Park, Effects of feeding evening primrose oil and hemp seed oil on the deposition of gamma fatty acid in eggs, J. of the Korean Oil Chemists' Soc, 25, 196 (2008). 

  13. K.M. Flegal, M.D. Carroll, C.L. Ogden and L.R. Curtin, Prevalence and trends in obesity among U.S. adults, 1999-2008, JAMA, 303, 235 (2010). 

  14. C.D.C. Health, US: With chart book on trends in the health of Americans, National Center for Health Statistics, DHHS, publication No. 2004-1232 (2004). 

  15. K.E. Thorpe, C.S. Florence, D.H. Howard and P. Joski, Trends: The impact of obesity on rising medical spending, Health Aff Suppl Web Exclusives, W4-480-W4-486 (2004). 

  16. E.A. Finkelstein, O.A. Khavjou, H. Thompson, J.G. Trogdon, L. Pan, B. Sherry and W. Dietz, Obesity and severe obesity forecasts through 2030, Am J Prev Med, 42, 563 (2012). 

  17. C.H.C. Chakraborty, C. H. Hsu, Z. H. Wen, C. S. Lin and G. Agoramoorthy, Zebrafish: a complete animal model for in vivo drug discovery and development, Current Drug Metabolism, 10, 116 (2009). 

  18. G. Kari, U. Rodeck and A. P. Dicker, Zebrafish: an emerging model system for human disease and drug discovery, Clinical Pharmacology and Therapeutics, 82, 70 (2007). 

  19. H. Olson, G. Betton and D. Robinson, Concordance of the toxicity of pharmaceuticals in humans and in animals, Regul. Toxicol. Pharmacol, 32, 56 (2000). 

  20. J. Hau, Animal Models for Human diseases. Sourcebook of models for biomedical research, PP 3 (2008). 

  21. H.S. White, Clinical significance of animal seizure models and mechanism of action studies of potential antiepileptic drugs, Epilepsia., 38, 9 (1997). 

  22. C. Bolton, The translation of drug efficacy from in vivo models to human disease with special reference to experimental autoimmune encephalomyelitis and multiple sclerosis, Inflammopharmacology, 15, 183 (2007). 

  23. R.R. Leker and S. Constantini, Experimental models in focal cerebral ischemia: are we there yet?, Acta Neurochir, 83, 55 (2002). 

  24. J. Wang, J. Fields and S. Dore, The development of an improved preclinical mouse model of intracerebral hemorrhage using double infusion of autologous whole blood, Brain Res, 1222, 214 (2008). 

  25. M.A. Rynkowski, G.H. Kim and R.J. Komotar, A mouse model of intracerebral hemorrhage using autologous blood infusion, Nat. Protoc, 3, 122 (2008). 

  26. F. Homo-Delarche and H.A. Drexhage, Immune cells, pancreas development, regeneration and type 1 diabetes, Trends Immunol, 25, 222 (2004). 

  27. H. Hisaeda, Y. Maekawa and D. Iwakawa, Escape of malaria parasites from host immunity requires CD4+ CD25+ regulatory T cells, Nat Med 10, 29 (2004). 

  28. A. Coppi, M. Cabinian, D. Mirelman and P. Sinnis, Antimalarial activity of allicin, a biologically active compound from garlic cloves, Antimicrob Agents Chemother, 50, 1731 (2006). 

  29. F. Frischknecth, B. Martin, I. Thiery, C. Bourgouin and R. Menard, Using green fluorescent malaria parasites to screen for permissive vector mosquitoes, Malar J, 5, 23 (2006). 

  30. R. Jaenisch and B. Mintz, Simian virus 40DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA, Proc Natl Acad Sci, 71, 1250 (1974). 

  31. J. Gordon and F. Ruddle, Integration and stable germ line transmission of genes injected into mouse pronuclei, Science, 214, 1244 (1981). 

  32. F. Costantini and E. Lacy, Introduction of a rabbit beta-blobin gene into the mouse germ line, Nature, 294, 92 (1981). 

  33. S. J. Bultman, E. J. Michaud and R. P. Woychik, Molecular characterization of the mouse agouti locus, Cell, 71, 1195 (1992). 

  34. N. Matsunaga, V. Virador and C. Santis, In situ localization of agouti signal protein in murine skin using immunohistochemistry with an ASP-specific antibody, Biochemical and Biophysical Research Communications, 270, 176 (2000). 

  35. S. E. Millar, M. W. Miller, M. E. Stevens and G. S. Barsh, Expression and transgenic studies of the mouse agouti gene provide insight into the mechanisms by which mammalian coat color patterns are generated, Development, 121, 3223 (1995). 

  36. D. Willard, D. Lu and I. R. Patel, Agouti protein is an antagonist of the melanocytestimulating-hormone receptor, Nature, 371, 799 (1994). 

  37. D. M. J. Duhl, M. E. Stevens and H. Vrieling, Pleiotropic effects of the mouse lethal yellow (A(y)) mutation explained by deletion of a maternally expressed gene and the simultaneous production of agouti fusion RNAs, Development, 120, 1695 (1994). 

  38. E. J. Michaud, S. J. Bultman, L. J. Stubbs and R. P. Woychik, The embryonic lethality of homozygous lethal yellow mice (A(y)/A(y)) is associated with the disruption of a novel RNAbinding protein, Genes and Development, 7, 1203 (1993). 

  39. M. L. Klebig, J. E.Wilkinson, J. G. Geisler and R. P.Woychik, Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur, Proceedings of the National Academy of Sciences of the United States of America, 92, 4728 (1995). 

  40. R. L. Mynatt, R. J. Miltenberger and M. L. Klebig, Combined effects of insulin treatment and adipose tissuespecific agouti expression on the development of obesity, Proceedings of the National Academy of Sciences of the United States of America, 94, 919 (1997). 

  41. G. T. Kucera, D. M. Bortner and M. P. Rosenberg, Overexpression of an Agouti cDNA in the skin of transgenic mice recapitulates dominant coat color phenotypes of spontaneous mutants, Developmental Biology, 173, 162 (1996). 

  42. S. R. Smith, B. Gawronska-Kozak and L. Janderova, Agouti expression in human adipose tissue: functional consequences and increased expression in type 2 diabetes, Diabetes, 52, 2914 (2003). 

  43. B. D. Wilson, M. M. Ollmann, L. Kang, M. Stoffel, G. I. Bell and G. S. Barsh, Structure and function of ASP, the human homolog of the mouse agouti gene, Human Molecular Genetics, 4, 223 (1995). 

  44. H. Y. Kwon, S. J. Bultman and C. Loffler, Molecular structure and chromosomalmapping of the human homolog of the agouti gene, Proceedings of the National Academy of Sciences of the United States of America, 91, 9760 (1994). 

  45. A. M. Ingalls, M. M. Dickie and G. D. Snell, Obese, a new mutation in the house mouse, The Journal of Heredity, 41, 317 (1950). 

  46. K. P. Hummel, M. M. Dickie and D. L. Coleman, Diabetes, a new mutation in the mouse, Science, 153, 1127 (1966). 

  47. H. Chen, O. Charlat and L. A. Tartaglia, Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice, Cell, 84, 491 (1996). 

  48. L. Herberg and D. L. Coleman, Laboratory animals exhibiting obesity and diabetes syndromes, Metabolism, 26, 59 (1977). 

  49. H. S. Jurgens, A. Schurmann and R. Kluge, Hyperphagia, lower body temperature, and reduced running wheel activity precede development of morbid obesity in New Zealand obese mice, Physiological Genomics, 25, 234 (2006). 

  50. W. Suzuki, S. Iizuka and M. Tabuchi et al, A new mouse model of spontaneous diabetes derived from ddY strain, Exp. Anim, 48, 181 (1999). 

  51. I. Hirayama, Z. Yi and S. Izumi, Genetic analysis of obese diabetes in the TSOD mouse, Diabetes, 48, 1183 (1999). 

  52. S. Iizuka, W. Suzuki and M. Tabuchi, Diabetic complications in a new animal model (TSOD mouse) of spontaneous NIDDM with obesity, Experimental Animals, 54, 71 (2005). 

  53. M. F. Allan, E. J. Eisen and D. Pomp, The M16 mouse: an outbred animal model of early onset polygenic obesity and diabesity, Obesity Research, 12, 1397 (2004). 

  54. M. Nakamura and K. Yamada, Studies on a diabetic (KK) strain of the mouse, Diabetologia, 3, 212 (1967). 

  55. M. Igel, B. A. Taylor, S. J. Phillips,W. Becker, L. Herberg and H. G. Joost, Hyperleptinemia and leptin receptor variant Asp600Asn in the obese, hyperinsulinemic KKmouse strain, Journal of Molecular Endocrinology, 21, 337 (1998). 

  56. H. Ikeda, KK mouse, Diabetes Research and Clinical Practice, 24, S313 (1994). 

  57. M. Okazaki, Y. Saito and Y. Udaka, Diabetic nephropathy in KK and KK-A mice, Experimental Animals, 51, 191 (2002). 

  58. A.A. Butler and R.D. Cone, The melanocortin receptors: lessons from knockout models, Neuropeptides, 36, 77 (2002). 

  59. O. Reizes, J. Lincecum and Z. Wang, Transgenic expression of syndecan-1 uncovers a physiological control of feeding behavior by syndecan-3, Cell, 106, 105 (2001). 

  60. L. M. Zucker and T. F. Zucker, Fatty, a new mutation in the rat, Journal of Heredity, 52, 275 (1961). 

  61. G. A. Bray, The Zucker fatty rat: a review, Federation Proceedings, 36, 148 (1977). 

  62. J. E. Friedman, J. E. De Vente, R. G. Peterson and G. L. Dohm, Altered expression of muscle glucose transporter GLUT-4 in diabetic fatty Zucker rats (ZDF/Drt-fa), American Journal of Physiology, 261, 782 (1991). 

  63. H. Ikeda, A. Shino, T. Matsuo, H. Iwatsuka and Z. Suzuoki, A new genetically obese-hyperglycemic rat (Wistar fatty), Diabetes, 30, 1045 (1981). 

  64. G. Imai, T. Satoh and T. Kumai, Hypertension accelerates diabetic nephropathy in Wistar fatty rats, a model of type 2 diabetes mellitus, via mitogen-activated protein kinase cascades and transforming growth factor- ${\beta}1$ , Hypertension Research, 26, 339 (2003). 

  65. H. Matsui, M. Suzuki, R. Tsukuda, K. Iida, M. Miyasaka and H. Ikeda, Expression of ICAM-1 on glomeruli is associated with progression of diabetic nephropathy in a genetically obese diabetic rat, Wistar fatty, Diabetes Research and Clinical Practice, 32, 1 (1996). 

  66. L. N. Berti-Mattera, J. Lowery, S. F. Day, R. G. Peterson and J. Eichberg, Alteration of phosphoinositide metabolism, protein phosphorylation, and carbohydrate levels in sciatic nerve fromWistar fatty diabetic rats, Diabetes, 38, 373 (1989). 

  67. K. Kawano, T. Hirashima, S. Mori and T. Natori, OLETF (Otsuka Long-Evans Tokushima fatty) rat: a new NIDDM rat strain, Diabetes Research and Clinical Practice, 24, S317 (1994). 

  68. D. Jia, M. Taguchi and M. Otsuki, Synthetic protease inhibitor camostat prevents and reverses dyslipidemia, insulin secretory defects, and histological abnormalities of the pancreas in genetically obese and diabetic rats, Metabolism, 54, 619 (2005). 

  69. N. L. Bodkin, J. S. Hannah, H. K. Ortmeyer and B. C. Hansen, Central obesity in rhesus monkeys: association with hyperinsulinemia, insulin resistance and hypertriglyceridemia?, International Journal of Obesity, 17, 53 (1993). 

  70. B. C. Hansen and N. L. Bodkin, Primary prevention of diabetes mellitus by prevention of obesity in monkeys, Diabetes, 42, 1809 (1993). 

  71. J. W. Kemnitz, Obesity in macaques: spontaneous and induced, Advances in Veterinary Science and Comparative Medicine, 28, 81 (1984). 

  72. W. A. Banks, J. Altmann, R. M. Sapolsky, J. E. Phillips-Conroy and J. E. Morley, Serum leptin levels as a marker for a syndrome X-like condition in wild baboons, Journal of Clinical Endocrinology and Metabolism, 88, 1234 (2003). 

  73. T. Takahashi, A. Higashino and K. Takagi, Characterization of obesity in Japanese monkeys (Macaca fuscata) in a pedigreed colony, Journal of Medical Primatology, 35, 30 (2006). 

  74. M.D. Hand, P.J. Armstrong and T.A. Allen, Obesity: occurrence, treatment and prevention, The Veterinary Clinics of North America, 19, 447 (1989). 

  75. K. Lindblad-Toh, C.M. Wade and T.S. Mikkelsen, Genome sequence, comparative analysis and haplotype structure of the domestic dog, Nature, 438, 803 (2005). 

  76. A.T. Edney and P.M. Smith, Study of obesity in dogs visiting veterinary practices in the United Kingdom, The Veterinary Record, 118, 391 (1986). 

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로