$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

폴리올레핀 기반 블록 또는 그라프트 공중합체의 정밀 제조에 대한 고찰
Study on the controlled preparation of polyolefin based block or graft copolymers 원문보기

Elastomers and composites = 엘라스토머 및 콤포지트, v.48 no.1, 2013년, pp.30 - 38  

이종헌 (세종대학교 나노공학과) ,  홍성철 (세종대학교 나노공학과)

초록
AI-Helper 아이콘AI-Helper

폴리올레핀은 광범위한 분야에서 이용되는 범용성 고분자로 물성이 우수하고 가격경쟁력이 높기 때문에 오랜 시간 동안 산업적 요구에 따라 발전하여 왔다. 그러나 폴리올레핀은 비극성 재료로서 다른 물질과의 상호 작용이 부족하기 때문에 그 용도가 제한되고 있다. 따라서 폴리올레핀 사슬에 극성기를 도입함으로써 그 응용 분야를 확장하기 위한 노력이 계속되고 있다. 폴리올레핀에 기능성을 부여하기 위하여 블록 공중합체 및 그라프트 공중합체로 대표되는 분절 공중합체를 합성할 수 있으며, 이러한 공중합체는 폴리올레핀 고유의 물성 손실을 최소화함과 동시에 기능성을 부여할 수 있다는 점에서 주목 받고 있다. 또한 리빙 라디칼 중합법을 이용하면 잘 제어된 구조와 조성을 가지는 공중합체를 제조할 수 있으며, 다양한 중합공정에 적용될 수 있다. 이에 따라, 본 리뷰에서는 리빙 라디칼 중합법을 이용한 폴리올레핀 기반 블록 또는 그라프트 공중합체의 제조 예들에 대하여 정리해 보았다.

Abstract AI-Helper 아이콘AI-Helper

Polyolefin is one of the most important commodity polymers having excellent physical properties and cost competitiveness, which has continuously broadened their market in response to a heavy demand from industry. However, the lack of polarity in polyolefin has limited its applications, especially wh...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 특히 리빙 라디칼 중합법을 이용하면 균일한 구조를 가지고, 다양한 기능성기를 가진 고분자를 설계하고 합성할 수 있다. 이에 본 리뷰 논문에서는 리빙 라디칼 중합법을 이용한 폴리올레핀의 극성 개질법을 그 방법에 따라 분류하여 정리해 보았다. 블록이나 그라프트 공중합체는 폴리올레핀 고유의 우수한 물성의 저하를 최소화하면서 개질할 수 있는 좋은 방법으로, 그 중에서도 사슬 연장법에 의한 블록공중합체와 “grafting-from” 법에 의한 그라프트 공중합체의 합성법이 가장 많이 연구되어 왔다.
  • 이에 본 리뷰에서는, LRP법을 이용한 폴리올레핀 기반 극성 블록 및 그라프트 공중합체 합성법에 대하여 합성방법의 종류에 따라 정리하여 보았다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
폴리올레핀 특징? 폴리올레핀은 광범위한 분야에서 이용되는 범용성 고분자로 물성이 우수하고 가격경쟁력이 높기 때문에 오랜 시간 동안 산업적 요구에 따라 발전하여 왔다. 그러나 폴리올레핀은 비극성 재료로서 다른 물질과의 상호 작용이 부족하기 때문에 그 용도가 제한되고 있다.
폴리올레핀의 제한점? 폴리올레핀은 광범위한 분야에서 이용되는 범용성 고분자로 물성이 우수하고 가격경쟁력이 높기 때문에 오랜 시간 동안 산업적 요구에 따라 발전하여 왔다. 그러나 폴리올레핀은 비극성 재료로서 다른 물질과의 상호 작용이 부족하기 때문에 그 용도가 제한되고 있다. 따라서 폴리올레핀 사슬에 극성기를 도입함으로써 그 응용 분야를 확장하기 위한 노력이 계속되고 있다.
β-hydride elimination 반응의 장점? 상용 폴리프로필렌의 열분해로 얻어진 말단이 불포화된 폴리프로필렌은 브롬화를 통해 ATRP개시제로 사용할 수 있다29. 이 반응은 allylic bromide 위치에서 개시하여 사슬연장반응이 높은 효율로 진행된다는 장점이 있으나, 불포화 결합부위에 개시 site를 도입하는 것이 쉽지 않다는 단점 또한 가지고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (55)

  1. M. A. J. Schellekens, and B. Klumperman, "Synthesis of polyolefin block and graft copolymers", J. Macromol. Sci., Rev. Macromol. Chem. Phys., C40, 167 (2000). 

  2. K. W. Doak, In Encyclopedia of Polymer Science and Engineering. H. F. Mark Ed. John Wiley & Sons: New York, 1986; Vol. 6, p 386. 

  3. S. D. Ittel, L. K. Johnson, and M. Brookhart, "Late-Metal Catalysts for Ethylene Homo- and Copolymerization", Chem. Rev., 100, 1169 (2000). 

  4. L. S. Boffa, and B. M. Novak, "Copolymerization of polar monomers with olefins using transition-metal complexes", Chem. Rev., 100, 1479 (2000). 

  5. H. Yasuda, "Organo Transition Metal Initiated Living Polymerizations", Prog. Polym. Sci., 25, 573 (2000). 

  6. R. G. Lopez, F. D'Agosto, and C. Boisson, "Synthesis of well-defined polymer architectures by successive catalytic olefin polymerization and living/controlled polymerization reactions", Prog. Polym. Sci., 32, 419 (2007). 

  7. T. C. Chung, "Synthesis of functional polyolefin copolymers with graft and block structures", Prog. Polym. Sci., 27, 39 (2002). 

  8. J. Y. Dong, and Y. Hu, "Design and synthesis of structurally well-defined functional polyolefins via transition metal-mediated olefin polymerization chemistry", Coord. Chem. Rev., 250, 47 (2006). 

  9. N. Kawahara, J. Saito, S. Matsuo, H. Kaneko, T. Matsugi, and N. Kashiwa, "Polymer Hybrids Based on Polyolefins- Syntheses, Structures, and Properties", Adv. Polym. Sci., 217, 79 (2008). 

  10. C. J. Hawker, A. W. Bosman, and E. Harth, "New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations", Chem. Rev., 101, 3661 (2001). 

  11. K. Matyjaszewski, and J. Xia, "Atom Transfer Radical Polymerization", Chem. Rev., 101, 2921 (2001). 

  12. G. Moad, E. Rizzardo, and S. H. Thang, "Living Radical Polymerization by the RAFT Process-A Second Update", Aust. J. Chem, 62, 1402 (2009). 

  13. K. Matyjaszewski, "Macromolecular engineering: From rational design through precise macromolecular synthesis and processing to targeted macroscopic material properties", Prog. Polym. Sci., 30, 858 (2005). 

  14. N. Hadjichristidis, H. Iatrou, M. Pitsikalis, and J. Mays, "Macromolecular architectures by living and controlled/living polymerizations", Prog. Polym. Sci., 31, 1068 (2006). 

  15. J. S. Wang, and K. Matyjaszewski, "Controlled/"living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes", J. Am. Chem. Soc., 117, 5614 (1995). 

  16. M. Kamigaito, T. Ando, and M. Sawamoto, "Metal-catalyzed living radical polymerization", Chem. Rev., 101, 3689 (2001). 

  17. M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, and G. K. Hamer, "Narrow molecular weight resins by a free-radical polymerization process", Macromolecules, 26, 2987 (1993). 

  18. T. Wannemacher, D. Braun, and R. Pfaendner, "Novel copolymers via nitroxide mediated controlled free radical polymerization of vinyl chloride", Macromol. Symp., 202, 11 (2003). 

  19. J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T.P.T. Le, R. T. A. Mayadunne, G.F. Meijs, C.L. Moad, and G. Moad, "Living free-radical polymerization by reversible addition- fragmentation chain transfer: the RAFT process", Macromolecules, 31, 5559 (1998). 

  20. T. Matsugi, S. I. Kojoh, N. Kawahara, S. Matsuo, H. Kaneko, and N. Kashiwa, "Synthesis and morphology of polyethylene- block-poly(methyl methacrylate) through the combination of metallocene catalysis with living radical polymerization", J. Polym. Sci., Part A: Polym. Chem., 41, 3965 (2003). 

  21. R. G. Lopez, C. Boisson, F. D'Agosto, R. Spitz, F. Boisson, D. Gigmes, and D. Bertin, "Catalyzed chain growth of polyethylene on magnesium for the synthesis of macroalkoxyamines: Application to the production of block copolymers using controlled radical polymerization", J. Polym. Sci., Part A: Polym. Chem., 45, 2705 (2007). 

  22. N. Kawahara, S. Kojoh, S. Matsuo, H. Kaneko, T. Matsugi, J. Saito, and N. Kashiwa, "Synthetic method of polyethylene- poly(methylmethacrylate) (PE-PMMA) polymer hybrid via reversible addition-fragmentation chain transfer (RAFT) polymerization with functionalized polyethylene", Polym. Bull., 57, 805 (2006). 

  23. Y. Inoue, T. Matsugi, N. Kashiwa, and K. Matyjaszewski, "Graft copolymers from linear polyethylene via atom transfer radical polymerization", Macromolecules, 37, 3651 (2004). 

  24. U. M. Stehling, E. E. Malmstrom, R. M. Waymouth, and C. J. Hawker, "Synthesis of poly(olefin) graft copolymers by a combination of metallocene and Properties", Macromolecules, 31, 4396 (1998). 

  25. S. C. Hong, S. Jia, M. Teodorescu, T. Kowalewski, K. Matyjaszewski, A. C. Gottfried, and M. Brookhart, "Polyolefin graft copolymers via living polymerization techniques: Preparation of poly (n-butyl acrylate)-graft-polyethylene through the combination of Pd-mediated living olefin polymerization and atom transfer radical polymerization", J. Polym. Sci., Part A: Polym. Chem., 40, 2736 (2002). 

  26. Y. Inoue, and K. Matyjaszewski, "Preparation of polyethylene block copolymers by a combination of postmetallocene catalysis of ethylene polymerization and atom transfer radical polymerization", J. Polym. Sci., Part A: Polym. Chem., 42, 496 (2003). 

  27. D. Sasaki, Y. Suzuki, T. Hagiwara, S. Yano, and T. Sawaguchi, "Synthesis and applications of triblock and multiblock copolymers using telechelic oligopropylene", Polymer, 49, 4094 (2008). 

  28. K. Matyjaszewski, J. Saget, J. Pyun, M. Schlogl, and B. Rieger, "Synthesis of polypropylene-poly(meth)acrylate block copolymers using metallocene catalyzed processes and subsequent atom transfer radical polymerization", J. Macromol. Sci. Part A-Pure Appl. Chem., 39, 901 (2002). 

  29. H. Kaneko, J. Saito, N. Kawahara, S. Matsuo, T. Matsugi, and N. Kashiwa, "Synthesis and characterization of polypropylene- based block copolymers possessing polar segments via controlled radical polymerization", J. Polym. Sci., Part A: Polym. Chem., 47, 812 (2008). 

  30. H. Kaneyoshi, Y. Inoue, and K. Matyjaszewski, "Synthesis of block and graft copolymers with linear polyethylene segments by combination of degenerative transfer coordination polymerization and atom transfer radical polymerization", Macromolecules, 38, 5425 (2005). 

  31. K. Zhang, Z. Ye, and R. Subramanian, "Synthesis of block copolymers of ethylene with styrene and n-butyl acrylate via a tandem strategy combining ethylene "living" polymerization catalyzed by a functionalized Pd-diimine catalyst with atom transfer radical polymerization", Macromolecules, 41, 640 (2008). 

  32. R. G. Lopez, C. Boisson, F. D'Agosto, R. Spitz, F. Boisson, D. Bertin, and P. Tordo, "Synthesis and characterization of macroalkoxyamines based on polyethylene", Macromolecules, 37, 3540 (2004). 

  33. H. D. Brouwer, M. A. J. Schellekens, B. Klumperman, M. J. Monteiro, and A. L. German, "Controlled radical copolymerization of styrene and maleic anhydride and the synthesis of novel polyolefin-based block copolymers by reversible addition- fragmentation chain-transfer (RAFT) polymerization", J. Polym. Sci., Part A: Polym. Chem., 38, 3596 (2000). 

  34. C. Cao, J. Zou, J. Y. Dong, Y. Hu, and T. C. Chung, "Synthesis of polypropylene graft copolymers by the combination of a polypropylene copolymer containing pendant vinylbenzene groups and atom transfer radical polymerization", J. Polym. Sci., Part A: Polym. Chem., 43, 429 (2004). 

  35. X. Wang, N. Luo, and S. Ying, "Synthesis of EPDM-g-PMMA through atom transfer radical polymerization", Polymer, 40, 4515 (1999). 

  36. A. Sen, and S. Liu, "Synthesis of novel linear polyethene- based graft copolymers by atom transfer radical polymerization", Macromolecules, 34, 1529 (2001). 

  37. J. M. Hwu, M. J. Chang, J. C. Lin, H. Y. Cheng, and G. J. Jiang, "Synthesis and application of functional polyethylene graft copolymers by atom transfer radical polymerization", J. Organomet. Chem, 690, 6300 (2005). 

  38. H. Kaneko, J. Saito, N. Kawahara, S. Matsuo, T. Matsugi, and N. Kashiwa, "Synthesis and characterization of polypropylene- based polymer hybrids linking poly(methyl methacrylate) and poly(2-hydroxyethyl methacrylate)", Polymer, 49, 4576 (2008). 

  39. K. Yamamoto, Y. Miwa, H. Tanaka, M. Sakaguchi, and S. Shimada, "Living radical graft polymerization of methyl methacrylate to polyethylene film with typical and reverse atom transfer radical polymerization", J. Polym. Sci., Part A: Polym. Chem., 40, 3350 (2002). 

  40. K. Yamamoto, H. Tanaka, M. Sakaguchi, and S. Shimada, "Well-defined poly(methyl methacrylate) grafted to polyethylene with reverse atom transfer radical polymerization initiated by peroxides", Polymer, 44, 7661 (2003). 

  41. S. M. Desai, S. S. Solanky, A .B. Mandale, K. Rathore, and R. P. Singh, "Controlled grafting of N-isoproply acrylamide brushes onto self-standing isotactic polypropylene thin films: surface initiated atom transfer radical polymerization", Polymer, 44, 7645 (2003). 

  42. K. Zhang, J. Wang, R. Subramanian, Z. Ye, J. Lu, and Q. Yu, "Chain Walking Ethylene Copolymerization with an ATRP Inimer for One-Pot Synthesis of Hyperbranched Polyethylenes Tethered with ATRP Initiating Sites", Macromol. Rapid Commun., 28, 2185 (2007). 

  43. S. C. Hong, T. Pakula, and K. Matyjaszewski, "Preparation of Polyisobutene-graft-Poly(methyl methacrylate) and Polyisobutene-graft-Polystyrene with Different Compositions and Side Chain Architectures through Atom Transfer Radical Polymerization (ATRP)", Macromol. Chem. Phys., 202, 3392 (2001). 

  44. T. Fonagy, B. Ivan, and M. Szesztay, "Polyisobutylenegraft- polystyrene by quasiliving atom transfer radical polymerization of styrene from poly (isobutylene-co-p-methylstyrene- co-p-bromomethylstyrene)", Macromol. Rapid Commun., 19, 479 (1998). 

  45. V. Percec, and B. Barboiu, ""Living" Radical Polymerization of Styrene Initiated by Arenesulfonyl Chlorides and CuI(bpy)nCl", Macromolecules, 28, 7970 (1995). 

  46. K. Matyjaszewski, "Improvements in Atom or Group Transfer Radical Polymerization", WO Patent 98/40415, 1998. 

  47. M. Baumert, J. Heinemann, R. Thomann, and R. Mulhaupt, "Highly branched polyethylene graft copolymers prepared by means of migratory insertion polymerization combined with TEMPO-mediated controlled radical polymerization", Macromol. Rapid Commun., 21, 271 (2000). 

  48. N. B. Bowden, M. Dankova, W. Wiyatno, C.J. Hawker, and R. M. Waymouth, "Synthesis of polyethylene graft block copolymers from styrene, butyl acrylate, and butadiene", Macromolecules, 35, 9246 (2002). 

  49. Y. Miwa, K. Yamamoto, M. Sakaguchi, and S. Shimada, "Living radical graft polymerization of styrene to polypropylene with 2,2,6,6-tetramethylpiperidinyl-1-oxy", Macromolecules, 32, 8234 (1999). 

  50. Y. Miwa, K. Yamamoto, M. Sakaguchi, and S. Shimada, "Well-defined polystyrene grafted to polypropylene backbone by "living" radical polymerization with TEMPO", Macromolecules, 34, 2089 (2001). 

  51. E. S. Park, H. J. Jin, I. M. Lee, M. N. Kim, H. S. Lee, and J. S. Yoon, "Grafting of polystyrene branches to polyethylene and polypropylene", J. Appl. Polym. Sci., 83, 1103 (2001). 

  52. M. Roth, R. Pfaendner, and P. Nesvadba, "Grafting of ethylenically unsaturated monomers onto polymers", U.S. patent 6525151, 2000. 

  53. J. Bonilla-Cruz, E. Saldivar-Guerra, J. R. Torres-Lubian, R. Guerrero-Santos, B. Lopez-Carpy, and G. Luna-Barcenas, "Controlled Grafting-From of Polystyrene on Polybutadiene: Mechanism and Spectroscopic Evidence of the Functionalization of Polybutadiene with 4-Oxo-TEMPO", Macromol. Chem. Phys., 209, 2268 (2008). 

  54. M. Abbasian, H. Namazi, and A. A. Entezami, ""Living" radical graft polymerization of styrene to styrene butadiene rubber (SBR) with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)", Polym. Adv. Technol., 15, 606 (2004). 

  55. L. Barner, N. Zwaneveld, S. Perera, Y. Pham, and T.P. Davis, "Reversible addition-fragmentation chain-transfer graft polymerization of styrene: Solid phases for organic and peptide synthesis", J. Polym. Sci., Part A: Polym. Chem., 40, 4180 (2002). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로