$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

The Effect of Spent Medium Recycle on Cell Proliferation, Metabolism and Baculovirus Production by the Lepidopteran Se301 Cell Line Infected at Very Low MOI 원문보기

Journal of microbiology and biotechnology, v.23 no.12, 2013년, pp.1747 - 1756  

Beas-Catena, Alba (Department of Chemical Engineering, University of Almeria) ,  Sanchez-Miron, Asterio (Department of Chemical Engineering, University of Almeria) ,  Garcia-Camacho, Francisco (Department of Chemical Engineering, University of Almeria) ,  Contreras-Gomez, Antonio (Department of Chemical Engineering, University of Almeria) ,  Molina-Grima, Emilio (Department of Chemical Engineering, University of Almeria)

Abstract AI-Helper 아이콘AI-Helper

The aim of this paper was to study the effect of spent medium recycle on Spodoptera exigua Se301 cell line proliferation, metabolism, and baculovirus production when grown in batch suspension cultures in Ex-Cell 420 serum-free medium. The results showed that the recycle of 20% of spent medium from a...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In previous works, we have succeeded in adapting Se301 cells to grow in suspension [5] and in commercially available serum-free media [4], thereby increasing their potential for use in bioprocess development. In this study, we present an analysis of the influence of spent medium recycle on the cell growth, metabolism, and baculovirus production by Se301 cells growing in suspension culture in serum-free medium.
  • The aim of the present study was to investigate the effects of spent medium recycle on Se301 cell proliferation, metabolism, and baculovirus production. The results strongly support the beneficial effect of serum-free medium recycle on cell growth and baculovirus production.
  • To study the effect of spent medium recycle on Se301 growth and virus production, fresh and spent Ex-Cell 420 media were mixed in different proportions ranging from 0 to 100% of spent medium. No other additive or supplements were added.

이론/모형

  • 9 cm. The cell concentration was determined by cell counting in a hemocytometer under a light microscope and their viability assessed using the Trypan Blue dye-exclusion method. After every passage, the cell suspension was filtered through a 0.
본문요약 정보가 도움이 되었나요?

참고문헌 (59)

  1. Ahm MH, Song M, Oh EY, Jamal A, Kim H, Ko K, et al. 2008. Production of therapeutic proteins with baculovirus expression system in insect cell. Entomol. Res. 38: S71-S78. 

  2. Airenne KJ, Hu YC, Kost TA, Smith RH, Kotin RM, Ono C, et al. 2013. Baculovirus: an insect-derived vector for diverse gene transfer applications. Mol. Ther. 21: 739-749. 

  3. Andersen A, Hansen P, Schaffer L, Kristensen C. 2000. A new secreted insect protein belonging to the immunoglobulin superfamily binds insulin and related peptides and inhibits their activities. J. Biol. Chem. 275: 16948-16953. 

  4. Beas-Catena A, Sanchez-Miron A, Garcia-Camacho F, Contreras Gomez A, Molina-Grima E. 2013. Adaptation of the Spodoptera exigua Se301 insect cell line to grow in serumfree suspended culture. Comparison of SeMNPV productivity in serum-free and serum-containing media. Appl. Microbiol. Biotechnol. 97: 3373-3381. 

  5. Beas-Catena A, Sanchez-Miron A, Garcia-Camacho F, Molina- Grima E. 2011 Adaptation of the Se301 insect cell line to suspension culture. Effect of turbulence on growth and on production of nucleopolyhedrovirus (SeMNPV). Cytotechnology 63: 543-552. 

  6. Bedard C, Tom R, Kamen A. 1993. Growth, nutrient consumption, and end-product accumulation in Sf-9 and BTI-EAA insect cell cultures: insights into growth limitation and metabolism. Biotechnol. Prog. 9: 615-624. 

  7. Benslimane C, Elias CB, Hawari H, Kamen A. 2005. Insights into the central metabolism of Spodoptera frugiperda (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5) insect cells by radiolabeling studies. Biotechnol. Prog. 21: 78-86. 

  8. Bernal V, Carinhas N, Yokomizo AY, Carrondo MJT, Alves PM. 2009. Cell density effect in the baculovirus-insect cells system: a quantitative analysis of energetic metabolism. Biotechnol. Bioeng. 104: 162-180. 

  9. Bernal V, Monteiro F, Carinhas N, Ambrosio R, Alves PM. 2010. An integrated analysis of enzyme activities, cofactor pools and metabolic fluxes in baculovirus-infected Spodoptera frugiperda Sf9 cells. J. Biotechnol. 150: 332-342. 

  10. Bhatia R, Jesionowski G, Ferrance J, Ataai MM. 1997. Insect cell physiology. Cytotechnology 24: 1-9. 

  11. Calles K, Eriksson U, Haggstrom L. 2006. Effect of conditioned medium factors on productivity and cell physiology in Trichoplusia ni insect cell cultures. Biotechnol. Prog. 22: 653-659. 

  12. Calles K, Svensson I, Lindskog E, Haggstrom L. 2006. Effects of conditioned medium factors and passage number on Sf9 cell physiology and productivity. Biotechnol. Prog. 22: 394-400. 

  13. Carinhas N, Bernal V, Monteiro F, Carrondo MJT, Oliveira R, A lves P M. 2 010. I mp roving b aculovirus p roduction a t high cell density through manipulation of energy metabolism. Metab. Eng. 12: 39-52. 

  14. Carinhas N, Bernal V, Yokomizo AY, Carrondo MJT, Oliveira R, Alves PM. 2009. Baculovirus production for gene therapy: the role of cell density, multiplicity of infection and medium exchange. Appl. Microbiol. Biotechnol. 81: 1041-1049. 

  15. Caron AW, Archambault J, Massie B. 1990. High-level recombinant protein production in bioreactors using the baculovirus-insect cell expression system. Biotechnol. Bioeng. 36: 1133-1140. 

  16. Doverskog M, Ljunggren J, Ohman L, Haggstrom L. 1997. Physiology of cultured animal cells. J. Biotechnol. 59: 103-115. 

  17. Doverskog M, Bertram E, Ljunggren J, ohman L, Sennerstam R, Haggstrom L. 2000. Cell cycle progression in serum free cultures of Sf9 insect cells: modulation by conditioned medium factors and implications for proliferation and productivity. Biotechnol. Progr. 16: 837-846. 

  18. Doverskog M, Tally M, Haggstrom L. 1999. Constitutive secretion of an endogenous insulin-like peptide binding protein with high affinity for insulin in Spodoptera frugiperda (Sf9) cell cultures. Biochem. Biophys. Res. Commun. 265: 674-679. 

  19. Drews M, Paalme T, Vilu R. 1995. The growth and nutrient utilization of the insect cell line Spodoptera frugiperda Sf9 in batch and continuous culture. J. Biotechnol. 40: 187-198. 

  20. Drugmand JC, Schneider YJ, Agathos SN. 2012. Insect cells as factories for biomanufacturing. Biotechnol. Adv. 30: 1140- 1157. 

  21. Drugmand JC. 2007. Study of the metabolism and physiology of High-Five insect cells for the development of processes for the production of recombinant protein. PhD Thesis, Universite Catholique de Louvain. Louvain-la-Neuve, Belgium. 

  22. Elias CB, Zeiser A, Bedard C, Kamen AA. 2000. Enhanced growth of Sf-9 cells to a maximum density of $5.2{\times}10^7$ cells per ml and production of ${\beta}-galactosidase$ at high cell density by fed batch culture. Biotechnol. Bioeng. 68: 381-388. 

  23. Eriksson U, Hassel J, Lullau E, Haggstrom L. 2005. Metalloproteinase activity is the sole factor responsible for the growth-promoting effect of conditioned medium in Trichoplusia ni insect cell cultures. J. Biotechnol. 119: 76-86. 

  24. Ferreira TB, Ferreira AL, Carrondo MJT, Alves PM. 2005. Effect of re-feed strategies and non-ammoniagenic medium on adenovirus production at high cell densities. J. Biotechnol. 119: 272-280. 

  25. Fowlkes J, Winkler M. 2002. Exploring the interface between metallo-proteinase activity and growth factor and cytokine bioavailability. Cytokine Growth Factor Rev. 13: 277-287. 

  26. Gioria VV, Jager V, Claus JD. 2006. Growth, metabolism and baculovirus production in suspension cultures of an Anticarsia gemmatalis cell line. Cytotechnology 52: 113-124. 

  27. Hara K, Funakoshi M, Kawarabata T. 1995. A cloned cell line of Spodoptera exigua has a highly increased susceptibility to the Spodoptera exigua nuclear polyhedrosis virus. Can. J. Microbiol. 41: 1111-1116. 

  28. Hitchman RB, Locanto E, Possee RD, King LA. 2011. Optimizing the baculovirus expression vector system. Methods 55: 52-57. 

  29. Hitchman RB, Murguia-Meca F, Danquah J, King LA. 2011. Baculovirus as vectors for human cells and applications in organ transplantation. J. Invertebr. Pathol. 107: S49-S58. 

  30. Ikonomou L, Schneider YJ, Agathos SN. 2003. Insect cell culture for industrial production of recombinant proteins. Appl. Microbiol. Biotechnol. 62: 1-20. 

  31. Ikonomou L, Bastin G, Schneider YJ, Agathos SN. 2001. Design of an efficient medium for insect cell growth and recombinant protein production. In Vitro Cell. Dev. Biol. Anim. 37: 549-559. 

  32. Ikonomou L, Bastin G, Schneider YJ, Agathos SN. 2004. Effect of partial medium replacement on cell growth and protein production for the $High-Five^{TM}$ insect cell line. Cytotechnology 44: 67-76. 

  33. Ikonomou L, Peeters-Joris C, Schneider YJ, Agathos SN. 2002. Supernatant proteolytic activities of High-Five insect cells grown in serum-free culture. Biotechnol. Lett. 24: 965-969. 

  34. Kim JS, Choi JY, Roh JY, Lee HY, Jang SS, Je YH. 2007. Production of recombinant polyhedra containing Cry1Ac fusion protein in insect cell lines. J. Microbiol. Biotechnol. 17: 739-744. 

  35. Kioukia N, Al-Rubeai M, Zhang Z, Emery AN, Nienow AW, Thomas CR. 1995. A study of uninfected and baculovirus infected Spodoptera frugiperda cells in T- and spinner flasks. Biotechnol. Lett. 17: 7-12. 

  36. Kioukia N, Nienow AW, Emery AN, Al-Rubeai M. 1995. Physiological and environmental factors affecting the growth of insect cells and infection with baculovirus. J. Biotechnol. 38: 243-251. 

  37. Kloppinger M, Fertig G, Fraune E, Miltenburger HG. 1990. Multistage production of Autographa californica nuclear polyhedrosis virus in insect cell cultures. Cytotechnology 4: 271-278. 

  38. Krieger M, Jahan N, Riehle M, Cao C, Brown M. 2004. Molecular characterization of insulin-like peptide genes and their expression in the African malaria mosquito, Anopheles gambiae. Insect Mol. Biol. 13: 303-315. 

  39. Lauffenburger D, Cozens C. 1989. Regulation of mammalian cell growth by autocrine growth factors: analysis of consequences for inoculum cell density effects. Biotechnol. Bioeng. 33: 1365-1378. 

  40. Mendonca RZ, Palomares LA, Ramirez OT. 1999. An insight into insect cell metabolism through selective nutrient manipulation. J. Biotechnol. 72: 61-75. 

  41. Metz SW, Pijlman GP. 2011. Arbovirus vaccines; opportunities for the baculovirus-insect cell expression system. J. Invertebr. Pathol. 107: S16-S30. 

  42. Munger J, Bennett BD, Parikh A, Feng XJ, McArdle J, Rabitz HA, et al. 2010. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat. Biotechnol. 26: 1179-1186. 

  43. Ohki T, Mikhailenko SV, Arai T, Ishii S, Ishiwata SI. 2012. Improvement of the yields of recombinant actin and myosin V-HMM in the insect cell/baculovirus system by the addition of nutrients to the high-density cell culture. J. Muscle Res. Cell Motil. 33: 351-358. 

  44. Palomares LA, Mena JA, Ramirez OT. 2012. Simultaneous expression of recombinant proteins in the insect cellbaculovirus system: production of virus-like particles. Methods 56: 389-395. 

  45. Polazzi E, Gianni T, Contestabile A. 2001. Microglial cells protect cerebellar granule neurons from apoptosis: evidence for reciprocal signalling. Glia 36: 271-280. 

  46. Radford KM, Reid S, Greenfield PF. 1997. Substrate limitation in the baculovirus expression vector system. Biotechnol. Bioeng. 56: 32-44. 

  47. Reuveny S, Kim YC, Kemp CW, Shiloach J. 1993. Production of recombinant proteins in high-density insect cell cultures. Biotechnol. Bioeng. 42: 235-239. 

  48. Riese U, Lutkemeyer D, Heidemann R, Buntemeyer H, Lehmann J. 1994. Reuse of spent cell culture medium in pilot-scale and rapid preparative purification with membrane chromatography. J. Biotechnol. 34: 247-257. 

  49. Rodas VM, Marques FH, Honda MT, Soares DM, Jorge SAC, Antoniazzi MM, et al. 2005. Cell culture derived AgMNPV bioinsecticide: biological constraints and bioprocess issues. Cytotechnology 48: 27-39. 

  50. Schlaeger EJ. 1996. The protein hydrolysate, Primatone R.L., is a cost-effective multiple growth promoter of mammalian cell culture in serum-containing and serum-free media and displays anti-apoptosis properties. J. Immunol. Methods 194: 191-199. 

  51. Shen CF, Voyer R, Tom R, Kamen A. 2010. Reassessing culture media and critical metabolites that affect adenovirus production. Biotechnol. Prog. 26: 200-207. 

  52. Stavroulakis DA, Kalogerakis N, Behie LA, Iatrou K. 1991. Kinetic data for the Bm-5 insect cell line in repeated-batch suspension cultures. Biotechnol. Bioeng. 38: 116-126. 

  53. Sugiura T, Amann E. 1996. Properties of two insect cell lines useful for the baculovirus expression system in serum-free culture. Biotechnol. Bioeng. 51: 494-499. 

  54. Summers MD. 2006. Milestones leading to the genetic engineering of baculo-viruses as expression vector systems and viral pesticides. Adv. Virus Res. 68: 3-73. 

  55. Toku K, Tanaka J, Yano H, Desaki J, Zhang B, Yang LH, et al. 1998. Microglial cells prevent nitric oxide-induced neuronal apoptosis in vitro. J. Neurosci. Res. 53: 415-425. 

  56. Woo SD, Roh JY, Choi JY, Jin BR. 2007. Propagation of Bombyx mori nucleopolyhedrovirus in nonpermissive insect cell lines. J. Microbiol. 45: 133-138. 

  57. Wood HA, Johnston B, Burand JP. 1982. Inhibition of Autographa californica nuclear polyhedrosis virus replication in high density Trichoplusia ni cell cultures. Virology 119: 245-254. 

  58. Wu JY, Ruan Q, Lam HYP. 1998. Evaluation of spent medium recycle and nutrient feeding strategies for recombinant protein production in the insect cell-baculovirus process. J. Biotechnol. 66: 109-116. 

  59. Zhang YH, Enden G, Merchuck JC. 2005. Insect cells- baculovirus system: factors affecting growth and low MOI infection. Biochem. Eng. J. 27: 8-16. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로