$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

준실시간 연속관측을 통한 제주 고산 PM2.5 OC와 EC의 계절별 사례별 특성
Semi-continuous Measurements of PM2.5 OC and EC at Gosan: Seasonal Variations and Characteristics of High-concentration Episodes 원문보기

한국대기환경학회지 = Journal of Korean Society for Atmospheric Environment, v.29 no.3, 2013년, pp.237 - 250  

한지현 (고려대학교 지구환경과학과) ,  방병조 (고려대학교 지구환경과학과) ,  이미혜 (고려대학교 지구환경과학과) ,  윤순창 (서울대학교 지구환경과학부) ,  김상우 (서울대학교 지구환경과학부) ,  장임석 (국립환경과학원 대기환경과) ,  강경식 (제주대학교 해양과학부)

Abstract AI-Helper 아이콘AI-Helper

At Gosan ABC superstation in Jeju Island, we measured organic carbon (OC) and elemental carbon (EC) in $PM_{2.5}$ from October 2009 to June 2010 using a Sunset Laboratory Model-4 Semi-Continuous OC/EC Field Analyzer. It employs TOT (Thermal-Optical-Transmittance) method with NIOSH 5040 pr...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • , 2010). 따라서 본 연구에서는 1시간 간격의 준 실시간 분석으로 탄소성 입자의 농도 특성 및 계절별 특성을 보다 상세히 파악하고, 고농도 OC와 EC 사례 동안 실시간 농도 변화를 자세하게 살펴봄으로써 동아시아 기후변화와 대기오염에서 중요한 역할을 하는 탄소성 입자에 대한 이해를 높이고자 한다.

가설 설정

  • 이에 계절별로 OC와 EC의 선형 상관관계를 살펴보았다(그림 2). OC와 EC의 상관성이 클수록 배출원이 같을 가능성이 높다. 계절별 OC와 EC의 상관계수(γ)는 가을, 겨울, 봄, 초여름 순으로 각각 0.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
에어러졸은 기후변화에서 어떤 행동을 하는가? 대기 중 부유하고 있는 에어러졸은 태양빛을 흡수, 반사하여 대기 복사에 영향을 주며, 구름응결핵으로 구름을 형성하는 등 기후변화에 중요한 물질로 알려져 있다 (Isaksen et al., 2009; Andreae et al.
OC와 EC의 선형 상관관계를 살펴본 결과는 어떠한가? 이에 계절별로 OC와 EC의 선형 상관관계를 살펴보았다(그림 2). OC와 EC의 상관성이 클수록 배출원이 같을 가능성이 높다. 계절별 OC와 EC의 상관계수(γ)는 가을, 겨울, 봄, 초여름 순으로 각각 0.91, 0.93, 0.83, 0.61로 초여름에 가장 낮았다. 이는 다른 계절에 비해 여름철에 OC와 EC의 발생원이 서로 다르다는 것을 시사한다. 그리고 초여름에 y 절편이 컸는데 이는 EC 배출이 없을 때 존재하는 OC가 가장 많다는 것을 의미하므로 SOC가 여름철에 높은 비율로 존재할 가능성이 크다. 또한 상승한 기온과 함께 생물 활동의 증가에 기인한 생물학적 OC의 배출이 그 원인으로 작용할 가능성이 있다(Cao et al., 2007). 반대로 겨울철에 OC와 EC의 상관계수가 가장 높아 탄소성 에어로졸이 비교적 유사한 배출원을 가지며 SOC의 생성 역시 적었을 것으로 보인다. 겨울은 SO2와 NO2의 농도가 여름에 비해 2.8배, 1.7배 높았으며(표 2) 주 풍향은 북서풍으로 주로 베이징 인근 지역을 통과해 고산으로 빠르게(평균풍속 9.6 m/s) 유입되었다. Zheng et al.(2005)는 베이징 지역에서 난방용 석탄 사용량이 연간 총 석탄 소비의 약 23%를 차지하고 이로 인한 SO2 오염이 심각한 수준이라고 보고하였다. 고산에서 겨울철 OC 및 EC 그리고 SO2와의 상관계수(γ)는 각각 0.82, 0.77로 높았다. 따라서 이들의 배출원이 서로 유사함을 알 수 있다.
전체 에어러졸 중 탄소 성분이 차지하는 비율은 어느정도인가? , 1992). 특히 전체 에어러졸 중 약 10%에서부터 많게는 40% 이상을 차지하는 탄소 성분의 경우(Monks et al., 2009; Andreae and Rosenfeld, 2008; Solomon et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (50)

  1. 기상홍보과(2002) 기상용어해설, 기상청, 204pp. 

  2. Andreae, M.O., D. Rosenfeld, P. Artaxo, A.A. Costa, G.P. Frank, K.M. Longo, and M.A.F. Silva-Dias (2004) Smoking rain clouds over the Amazon, Science, 303(5662), 1337-1342. 

  3. Andreae, M.O. and D. Rosenfeld (2008) Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Sci Rev., 89(1-2), 13-41. 

  4. Bae, M.S., C.S. Hong, Y.J. Kim, J.S. Han, K.J. Moon, Y. Kondo, Y. Komazaki, and Y. Miyazaki (2007) Intercomparison of two different thermal-optical elemental carbons and optical black carbon during ABC-EAREX2005, Atmos. Environ., 41(13), 2791-2803. 

  5. Batmunkh, T., Y.J. Kim, K.Y. Lee, M.G. Cayetano, J.S. Jung, S.Y. Kim, K.C. Kim, S.J. Lee, J.S. Kim, L.S. Chang, and J.Y. An (2011) Time-Resolved Measurements of PM2.5 Carbonaceous Aerosols at Gosan, Korea, J. Air Waste Manage. Assoc., 61(11), 1174-1182. 

  6. Birch, M.E. and R.A. Cary (1996) Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Technol., 25, 221-241. 

  7. Cao, G., X. Zhang, and F. Zheng (2006) Inventory of black carbon and organic carbon emissions from China, Atmos. Environ., 40(34), 6516-6527. 

  8. Cao, J.J., S.C. Lee, J.C. Chow, J.G. Watson, K.F. Ho, R.J. Zhang, Z.X. Chen, Y.M. Kang, S.C. Zou, L.Z. Zhang, S.H. Qi, M.H. Dai, Y. Cheng, and K. Hu (2007) Spatial and seasonal distributions of carbonaceous aerosols over China., J. Geophys. Res., 112, D22S11, doi:10.1029/2006JD008205. 

  9. Carmichael, G.R., Y. Zhang, L.L. Chen, M.S. Hong, and H. Ueda (1996) Seasonal variation of aerosol composition at Cheju Island, Korea, Atmos. Environ., 30(13), 2407-2416. 

  10. Castro, L.M., C.A. Pio, R.M. Harrison, and D.J.T. Smith (1999) Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations. Atmos. Environ., 33(17), 2771-2781. 

  11. Charlson, R.J., S.E. Schwartz, J.M. Hales, R.D. Cess, J.A. Coakley, J.E. Hansen, and D.J. Hofmann (1992) CLIMATE FORCING BY ANTHROPOGENIC AEROSOLS, Science, 255(5043), 423-430. 

  12. Chen, L.L., G.R. Carmichael, M.S. Hong, H. Ueda, S. Shim, C.H. Song, Y.P. Kim, R. Arimoto, J. Prospero, D. Savoie, K. Murano, J.K. Park, H.G. Lee, and C. Kang (1997) Influence of continental outflow events on the aerosol composition at Cheju Island, South Korea, J. Geophys. Res., 102(D23), 28551-28574. 

  13. Choi, S.-D. and Y.-S. Chang (2006) Carbon monoxide monitoring in Northeast Asia using MOPITT: Effects of biomass burning and regional pollution in April 2000, Atmos. Environ., 40(4), 686-697. 

  14. Chow, J.C., J.G. Watson, and Z. Lu (1996). Descriptive analysis of PM2.5 and PM10 and regionally representative locations during SJVAQS/AUSPEX. Atmos. Environ., 30(12), 2079-2112. 

  15. Chow, J.C., J.G. Watson, D. Crow, D.H. Lowenthal, and T. Merrifield (2001) Comparison of IMPROVE and NIOSH carbon measurements, Aerosol Sci. Technol., 34(1), 23-34. 

  16. Chow, J.C., J.G. Watson, P. Doraiswamy, L.-W.A. Chen, D.A. Sodeman, D.H. Lowenthal, K. Park, W.P. Arnott, and N. Motallebi (2009) Aerosol light absorption, black carbon, and elemental carbon at the Fresno Supersite, California, Atmos. Res., 93(4), 874-887. 

  17. Han, J.S., K.J. Moon, B.J. Kong, S.J. Lee, J.E. Kim, and Y.J. Kim (2005) Seasonal variation of chemical composition in fine particles at Gosan, Korea, Environ. Monit. Assess., 107(1-3), 221-237. 

  18. He, K., F. Yang., Y. Ma, Q.Z. Zhang, X. Yao, C.K. Chan, S. Cadle, T. Chan, and P.A. Mulawa (2001) The characteristics of PM2.5 in Beijing, China., Atmos. Environ., 35(29), 4959-4970. 

  19. He, Z., Y.J. Kim, K.O. Ogunjobi, J.E. Kim, and S.Y. Ryu (2004) Carbonaceous aerosol characteristics of PM2.5 particles in Northeastern Asia in summer 2002. Atmos. Environ., 38(12), 1795-1800. 

  20. IPCC (2007) Climate Change 2007: The Physical Science Basis (Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change), edited by: Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller, Cambridge Univ. Press, New York, 131-217. 

  21. Isaksen, I.S.A., C. Granier, G. Myhre, T.K. Berntsen, S.B. Dalsøren, M. Gauss, Z. Klimont, R. Benestad, P. Bousquet, W. Collins, T. Cox, V. Eyring, D. Fowler, S. Fuzzi, P. Jockel, P. Laj, U. Lohmann, M. Maione, P. Monks, A.S.H. Prevot, F. Raes, A. Richter, B. Rognerud, M. Schulz, D. Shindell, D.S. Stevenson, T. Storelvmo, W.C. Wang, M. van Weele, M. Wild, and D. Wuebbles (2009) Atmospheric composition change: Climate-Chemistry interactions, Atmos. Environ., 43(33), 5138-5192. 

  22. Kang, C.M., H.S. Lee, B.W. Kang, S.K. Lee, and Y. Sunwoo, (2004), Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episode in Seoul, South Korea., Atmos. Environ., 38(28), 4749-4760. 

  23. Kang, C.M., P. Koutrakis, and H.H. Suh (2010) Hourly measurements of fine particulate sulfate and carbon aerosols at the Harvard - U.S. environmental protection agency supersite in Boston, J. Air Waste Manage. Assc., 60(11), 1327-1334. 

  24. Kim, H.-S., J.-B. Huh, P.K. Hopke, T.M. Holsen, and S.-M Yi (2007) Characteristics of the major chemical constituents of PM2.5 and smog events in Seoul, Korea in 2003 and 2004, Atmos. Environ., 41 (32), 6762-6770. 

  25. Kim, Y.P., J.H. Lee, N.J. Baik, J.Y. Kim, S.-G. Shim, and C.-H. Kang (1998) Summertime characteristics of aerosol composition at Cheju Island, Korea, Atmos. Environ., 32(22), 3905-3915. 

  26. Lee, J.H., N.J. Baik, S.-G. Shim, and Y.P. Kim (1997) Measurement of Carbonaceous Species in Fine Particle at Kosan, Cheju Island during the Two Summer Seasons of 1994 and 1995, Korean J. of Atmos. Environ., 13(3), 179-191. (in Korean with English abstract) 

  27. Lee, K.H., Y.J. Kim, and M.J. Kim (2006) Characteristics of aerosol observed during two severe haze events over Korea in June and October 2004, Atmos. Environ., 40(27), 5146-5155. 

  28. Lee, M., M. Song, K.J. Moon, J.S. Han, G. Lee, and K.-R. Kim (2007) Origins and chemical characteristics of fine aerosols during the northeastern Asia regional experiment (Atmospheric Brown Cloud-East Asia Regional Experiment 2005), J. Geophys. Res., 112(D22), D22S29. 

  29. Lee, S., Y.S. Ghim, S.W. Kim, and S.C. Yoon (2008) Seasonal Variations of Chemical Composition and Optical Properties of Aerosols at Seoul and Gosan, Korean J. of Atmos. Environ., 24(4), 470-482. (in Korean with English abstract) 

  30. Lim, S., M. Lee, and K.S. Kang (2010) Seasonal variations of OC and EC in PM10, PM2.5, PM1.0 at Gosan superstation on Jeju Island, Korean J. of Atmos. Environ., 26(5), 567-580. (in Korean with English abstract) 

  31. Lim, S., M. Lee, G. Lee, S. Kim, S. Yoon, and K. Kang (2012) Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC Superstation and their ratios as source signature, Atmos. Chem. Phys., 12(4), 2007-2024. 

  32. Malaguti, A., M. Mircea, T.M.G. La Torretta, A. Piersanti, S. Salvi, G. Zanini, C. Telloli, F. Salfi, and M. Berico (2013) Fine carbonaceous aerosol characteristics at a coastal rural site in the Central Mediterranean as given by OCEC online measurements, J. Aerosol Sci., 56, 78-87. 

  33. Moon, K.J., J.S. Han, Y.S. Ghim, and Y.J. Kim (2008) Source apportionment of fine carbonaceous particles by positive matrix factorization at Gosan background site in East Asia. Environ. Int., 34(5), 654-664. 

  34. Monks, P.S., C. Granier, S. Fuzzi, A. Stohl, M.L. Williams, H. Akimoto, M. Amann, A. Baklanov, U. Baltensperger, I. Bey, N. Blake, R.S. Blake, K. Carslaw, O.R. Cooper, F. Dentener, D. Fowler, E. Fragkou, G.J. Frost, S. Generoso, P. Ginoux, V. Grewe, A. Guenther, H.C. Hansson, S. Henne, J. Hjorth, A. Hofzumahaus, H. Huntrieser, I.S.A. Isaksen, M.E. Jenkin, J. Kaiser, M. Kanakidou, Z. Klimont, M. Kulmala, P. Laj, M.G. Lawrence, J.D. Lee, C. Liousse, M. Maione, G. McFiggans, A. Metzger, A. Mieville, N. Moussiopoulos, J.J. Orlando, C.D. O'Dowd, P.I. Palmer, D.D. Parrish, A. Petzold, U. Platt, U. Poschl, A.S.H. Prevot, C.E. Reeves, S. Reimann, Y. Rudich, K. Sellegri, R. Steinbrecher, D. Simpson, H. ten Brink, J. Theloke, G.R. van der Werf, R. Vautard, V. Vestreng, C. Vlachokostas, and R. von Glasow (2009) Atmospheric composition change - global and regional air quality, Atmos. Environ., 43(33), 5268-5350. 

  35. NIOSH (1996) Method 5040 issue 1 : Elemental carbon (diesel exhaust). In NIOSH Manual of Analytical Methods, fourth ed. National Institute of Occupational Safety and Health, Cincinnati, OH. 

  36. Pang, Y., Y. Ren, O. Fida, H. Robert, E. Delbert, and W. William (2001) Semi-volatile species in PM2.5: comparison of integrated and continuous samplers for PM2.5 research or monitoring, J. Air Waste Manage. Assoc., 51(1), 25-36. 

  37. Polidori, A, B.J. Turpin, H.J. Lim, J.C. Cabada, R. Subramanian, S.N. Pandis, and A.L. Robinson (2006) Local and Regional Secondary Aerosol; Insights from a Year of Semi-Continuous Carbon measurements at Pittsburgh, Aerosol Sci. Technol., 40(10), 861-872. 

  38. Ramanathan, V., H. Akimoto, P. Bonasoni, M. Brauer, G. Carmichael, C.E. Chung, Y. Feng, S. Fuzzi, S.I. Hasnain, M. Iyngararasan, A. Jayaraman, M.G. Lawrence, T. Nakajima, T.S. Panwar, M.V. Ramana, M. Rupakheti, S. Weidemann, S.-C. Yoon, Y. Zhang, and A. Zhu (2008) tmospheric Brown Clouds and Regional Climate Change, Part I of Atmospheric Brown Clouds: Regional Assessment Report with Focus on Asia., Published by the Project Atmospheric Brown Cloud, United National Environment Programme, Nairobi, Kenya., 27-37 pp. 

  39. Saarikoski, S., H. Timonen, K. Saarnio, M. Aurela, L. Jarvi, P. Keronen, V. M. Kerminen, and R. Hillamo (2008) Sources of organic carbon in fine particulate matter in northern European urban air, Atmos. Chem. Phys., 8(20), 6281-6295. 

  40. Shin, H.J., J. Kim, B.C. Choi, S.N. Oh, J. Yu, and K. Bower (2002) Concentrations of Air Pollutants Measured at Kosan during ACE-Asia intensive Observation Period, Korean J. of Atmos. Environ., 18(6), 487-501. (in Korean with Eng-lish abstract) 

  41. Solomon, P., K. Baumann, E. Edgerton, R. Tanner, D. Eatiugh, W. Modey, H. Marin, D. Savoie, S. Natarajan, M.B. Meyer, and G. Norris (2003) Comparison of integrated samplers for mass and composition during the 1999 Atlanta Supersites project., J. Geophys. Res., 108 (D7), 8423, doi:10.1029/2001JD001218. 

  42. Song, M., M. Lee, K.J. Moon, J.S. Han, K.R. Kim, and G. Lee (2006) Chemical Characteristics of Fine Aerosols During ABC-EAREX2005, Korean J. of Atmos. Environ., 22(5), 604-613. (in Korean with English abstract) 

  43. Song, M., M. Lee, J.H. Kim, S.S. Yum, G. Lee, and K.-R. Kim (2010) New particle formation and growth in rela-tion to vertical mixing and chemical species during ABC-EAREX2005, Atmos. Res., 97(3), 359-370. 

  44. Streets, D.G., S. Gupta, S.T. Waldhoff, M.Q. Wang, T.C. Bond, and B. Yiyun (2001) Black carbon emissions in China, Atmos. Environ., 35(25), 4281-4296. 

  45. Streets, D.G., T.C. Bond, G.R. Carmichael, S.D. Fernandes, Q. Fu, D. He, Z. Klimont, S.M. Nelson, N.Y. Tsai, M.Q. Wang, J.H. Woo, and K.F. Yarber (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J. Geophys. Res., 108(D21), 8809, doi:10.1029/2002JD003093. 

  46. Szidat, S., M. Ruff, N. Perron, L. Wacker, H.A. Synal, M. Hallquist, A.S. Shannigrahi, K.E. Yttri, C. Dye, and D. Simpson (2009) Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Goteborg, Sweden, Atmos. Chem. Phys., 9, 1521-1535. 

  47. Turpin, B.J. and J.J. Huntzicker (1995) Identification of secondary aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQS. Atmos. Environ., 29(23), 3527-3544. 

  48. Yang, F., K. He, B. Ye, X. Chen, L. Cha, S.H. Cadle, T. Chan, and P.A. Mulawa (2005) One-Year record of organic and elemental carbon in fine particles in downtown Beijing and Shanghai, Atmos. Chem. Phys., 5, 1449-1457. 

  49. Yu, X.Y., R.A. Cary, and N.S. Laulainen (2009) Primary and secondary organic carbon downwind of Mexico City, Atmos. Chem. Phys., 9(18), 6793-6814. 

  50. Zheng, M., L.G. Salmon, J.J. Schauer, L. Zeng, C.S. Kiang, Y. Zhang, and G.R. Cass (2005) Seasonal trend in PM2.5 source contribution in Beijing, China., Atmos. Environ., 39(22), 3967-3976. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로