$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

환경·생태학적 기법을 이용한 혼합폐수 처리장의 생물학적 처리공정 내의 미생물 군집 특성 분석
Analysis of Microbial Community Structure in Biological Wastewater Treatment Process of Mixed Wastewater Treatment Facility using Environmental·Ecological Technique 원문보기

KSBB Journal, v.28 no.2, 2013년, pp.80 - 85  

손형식 (부산대학교 미생물학과) ,  이상준 (부산대학교 미생물학과) ,  손희종 (부산시 상수도사업본부 수질연구소)

Abstract AI-Helper 아이콘AI-Helper

The bacterial community structure in a biological reactor fed influent from a wastewater treatment system was investigated by denaturing gradient gel electrophoresis (DGGE) and in situ hybridization. Sludges were collected from three biological reactors (aerobic, oxic, and anoxic tanks) at the M was...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 DGGE를 이용하여 혼합 폐수의 생물학적 처리공정들의 박테리아의 군집을 분석한 결과, 다음과 같은 결론을 얻을 수 있었다.
  • 본 연구에서는 피혁 폐수와 수산 폐수를 혼합하여 처리하는 생물학적 폐수처리 공정의 단위공정들 내에 형성된 박테리아 군집의 구조와 밀도를 DGGE 기법을 이용하여 계절 변화 및 유입수의 성상 변화에 따른 생물학적 처리공정에서의 박테리아 군집들의 변화 특성을 평가하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
박테리아 군집을 해석하는 방법은? 박테리아 군집을 해석하는 방법으로 FISH (fluorescent in situ hybridization)와 DGGE (denaturing gradient gel electrophoresis) 기법과 같은 분자유전학적 방법들이 최근까지 많이 이용되고 있다 [10-14]. 이러한 기법들은 박테리아 배양이 필요치 않는 비배양적인 방법으로 박테리아 군집의 시간·공간적 변화를 in situ 상태로 파악하는 데에 효과적이다[15,16].
분자유전학적 방법의 장점은? 박테리아 군집을 해석하는 방법으로 FISH (fluorescent in situ hybridization)와 DGGE (denaturing gradient gel electrophoresis) 기법과 같은 분자유전학적 방법들이 최근까지 많이 이용되고 있다 [10-14]. 이러한 기법들은 박테리아 배양이 필요치 않는 비배양적인 방법으로 박테리아 군집의 시간·공간적 변화를 in situ 상태로 파악하는 데에 효과적이다[15,16].
산업 폐수의 특징은? 생물학적 처리공정은 일반적으로 물리·화학적 처리공정들에 비해 많은 장점들을 가지지만 오염물질 농도 부하, 수온, pH 및 용존 산소 등과 같은 유입수의 성상 변화에 매우 민감하기 때문에 처리효율에 많은 영향을 받는다 [17]. 특히, 피혁 폐수와 같은 산업 폐수의 경우는 중금속 등을 포함한 다양한 생물학적 독성 유발물질들이 함유되어 있어 유입수의 성상 변화는 생물학적 처리조의 운전효율에 많은 영향을 미친다 [18,19]. 따라서 생물학적 처리공정에서는 실제 현장에서의 효율적인 처리공정의 설계와 운영을 위하여 폐수의 성상변화에 따라 형성되는 박테리아 군집의 구조와 밀도를 파악하는 연구가 매우 중요하다.
질의응답 정보가 도움이 되었나요?

참고문헌 (31)

  1. Eikelboom, D. H. (1975) Filamentous organisms observed in activated sludge. Water Res. 9: 365-388. 

  2. Richard, M., O. Hao, and D. Jenkins (1985) Growth kinetics of Sphaerotilus species and their significance in activated sludge bulking. J. Water Pollut. Con. F. 57: 68-81. 

  3. Andreasen, K. and P. H. Nielsen (1997) Application of microautoradiography to the study of substrate uptake by filamentous microorganisms in activated sludge. Appl. Environ. Microbiol. 63: 3662-3668. 

  4. Nielsen, P. H., K. Andreasen, M. Wagner, L. L. Blackall, H. Lemmer, and R. J. Seviour (1998) Variability of type 021N in activated sludge as determined by in situ substrate uptake pattern and in situ hybridization with fluorescent rRNA targeted probes. Water Sci. Technol. 37: 423-440. 

  5. Eikelboom, D. H. (2000) Process Control of Activated Sludge Plants by Microscopic Investigation. IWA Publishing, London. 

  6. Ohashi, A., D. G. Viraj de Silva, B. Mobarry, J. A. Manem, D. A. Stahl, and B. E. Rittmann (1995) Influence of substrate C/N ratio on the structure of multi-species biofilms consisting of nitrifiers and heterotrophs. Water Sci. Technol. 32: 75-84. 

  7. Zhang, T. C. and P. L. Bishop (1996) Evaluation of substrate and pH effects in a nitrifying biofilm. Water Environ. Res. 68: 1107-1115. 

  8. Lazarova, V., D. Bellahcen, J. Manem, D. A. Stahl, and B. E. Rittmann (1999) Influence of operating conditions on population dynamics in nitrifying biofilms. Water Sci. Technol. 39: 5-11. 

  9. Kloep, F., I. Roske, and T. R. Neu (2000) Performance and micro-bial structure of a nitrifying fluidized-bed reactor. Water Res. 34: 311-319. 

  10. Kim, D. J., D. W. Han, S. C. Lee, B. G. Park, I. Kwon, C. K. Sung, and W. C. Park (2002) Wastewater treatment and microbial structure analysis by fluorescence in situ hybridization in a biofilm reactor. Korean J. Biotechnol. Bioeng. 17: 80-87. 

  11. Wong, M. T., T. Mino, R. J. Seviour, M. Onuki, and W. T. Liu (2005) In situ identification and characterization of the microbial community structure of full-scale enhanced biological phosphorous removal plants in Japan. Water Res. 39: 2901-2914. 

  12. Araya, R., K. Tani, T. Tagaki, N. Yamaguchi, and M. Nasu (2003) Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. FEMS Microbiol. Ecol. 43: 111-119. 

  13. Patil, S. S., M. S. Kumar, and A. S. Ball (2010) Microbial community dynamics in anaerobic bioreactors and algal tanks treating piggery wastewater. Appl. Microbiol. Biotechnol. 87: 353-363. 

  14. Dong, X. and G. B. Reddy (2010) Soil bacterial communities in constructed wetlands treated with swine wastewater using PCRDGGE technique. Bioresour. Technol. 101: 1175-1182. 

  15. Mino, T., H. Satoh, M. Onuki, T. Akiyama, T. Nomura, and T. Matsuo (2001) Strategic approach for characterization of bacterial community in enhanced biological phosphate removal (EBPR) process," In: T. Matsuo, K. Hanaki, S. Takizawa, and H. Satoh (Eds.), Advances in Water and Wastewater Treatment Technology: Molecular Technology, Nutrient Removal, Sludge Reduction and Environmental Health, Elsevier, London, UK. 

  16. Nielsen, P. H., C. Kragelund, R. J. Seviour, and J. L. Nielsen (2009) Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiol. Rev. 33: 969-998. 

  17. Jang, A., P. L. Bishop, S. Okabe, S. G. Lee, and I. S. Kim (2002) Effect of dissolved oxygen concentration on the biofilm and in situ analysis by fluorescence in situ hybridization (FISH) and microelectrodes. Water Sci. Technol. 47: 49-57. 

  18. Wani, R., K. M. Kodam, K. R. Gawai, and P. K. Dhakephalkar (2007) Chromate reduction by Burkholderia cepacia MCMB-821, isolated from the pristine habitate of alkaline crater lake, Appl. Microbial. Biotechnol. 75: 627-632. 

  19. Son, H. S., H. J. Son, M. Kim, E. Y. Ryu, G. Lee, and S. J. Lee (2010) Changes of microbial community structure according to a changes of season and influent characteristics in biological wastewater treatment. Korean J. KSEE. 32: 780-786. 

  20. Kim, G. T., G. Webster, J. W. Wimpenny, B. H. Kim, H. J. Kim, and A. J. Weightman (2006) Bacterial community structure, compartmentalization and activity in a microbial fuel cell. J. Appl. Microbiol. 101: 698-710. 

  21. Thompson, J. D., D. G. Higgins, and T. J. Gibson (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weightmatrix choice. Nucleic. Acids Res. 22: 4673-4680. 

  22. Ryu, E. Y., M. Kim, and S. J. Lee (2011) Characterization of microbial fuel cells enriched using Cr(VI)-containing sludge. J. Microbiol. Biotechnol. 21: 187-191. 

  23. Wagner, M., R. Amann, H. Lemmer, and K. Scheleifer (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59: 1520-1525. 

  24. Glckner, F. O., B. M. Fuchs, and R. Amann (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65: 3721-3726. 

  25. Wagner, M., R. Erhart, W. Manz, R. Amann, H. Lemmer, D. Wedi, and K. H. Schleifer (1994) Development of an rRNA-targeted oligonucleotide probe specific for the genus acinetobacter and its application for in situ monitoring in activated sludge. Appl. Environ. Microbiol. 60: 792-800. 

  26. Wani, P. A., M. S. Khan, and A. Zaidi (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth chromium amended soil. Biotechnol. Lett. 30: 159-163. 

  27. Shi, L., K. M. Rosso, J. M. Zachara, and J. K. Fredrickson (2012) Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective. Biochem. Soc. Trans. 40: 1261-1267. 

  28. Rlling, W. F., B. M. van Brewkelen, M. Braster, B. Lin, and H. W. van Verseveld (2001) Relationships between microbial community structure and hydrochemistry in a landfill leachate-populated aquifer. Appl. Environ. Microbiol. 67: 4619-4629. 

  29. Chneby, D., L. Philippot, A. Hartmann, C. Henault, and J. C. Germon (2000) 16S rDNA analysis for characterization of denitrifying bacteria isolated from three agricultural soil. FEMS Microbiol. Ecol. 34: 121-128. 

  30. Otlanabo, N. L. (1993) Denitrification of Ground Water for Potable Purposes. WRC report 403/1/93. 

  31. Zumft, W. G. (1992) The denitrifying prokaryotes, In: A. Balows, H. G. Truper, M. Dworkim, W. Harder and K. H. Schleifer (eds.), The Prokaryotes: Springer-verlag, New York, USA. 

저자의 다른 논문 :

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로