$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

영남육괴 북동부 울진지역 화강암류의 지화학적 특성
Geochemical Characteristics of the Uljin Granitoids in Northeastern Part of the Yeongnam Massif, Korea 원문보기

한국지구과학회지 = Journal of the Korean Earth Science Society, v.34 no.4, 2013년, pp.313 - 328  

위수민 (한국교원대학교 지구과학교육과) ,  김지영 (운암고등학교) ,  임성만 (한국교원대학교 지구과학교육과)

초록
AI-Helper 아이콘AI-Helper

영남육괴 북동부에 분포하는 쥐라기 심성암체들은 유라시아대륙의 동북부지역 아래로 고태평양판의 섭입에 의해서 야기된 활발했던 화성활동의 산물이다. 지화학적 연구를 통하여 이 지역에 분포하는 화강암류의 성인과 지구조환경을 유추하여 보았다. 영남육괴 북동부에 위치하는 울진화강암류는 비알칼리(subalkaline)영역에 속하는 칼크-알칼리(calc-alkaline)계열로, 분화에 따른 주성분원소의 변화 경향은 전반적으로 다른 지역의 쥐라기 화강암류의 분화 경향과 유사하게 나타나지만, 각 암체의 분화경향이나 화학조성을 살펴볼 때 각 암체의 마그마 근원물질은 서로 다른 것으로 사료된다. 울진화강암류는 연구지역 주변에 분포하는 다른 화강암류와 비교하여 $Al_2O_3$의 함량 및 Cr, Co, Ni, Sr, Y, Nb 등 미량원소의 함량에서 뚜렷한 차이를 보인다. 울진화강암류의 지화학적 특징은 높은 $Al_2O_3$, Sr 함량과 높은 Sr/Y, La/Yb비를 가지며, 낮은 Y과 Yb함량과 같은 슬랩용융(slab-melting)으로 생성된 아다카이트에서 흔히 관찰되는 지화학적 특성을 나타낸다. 울진화강암류의 주성분원소($SiO_2$, $Al_2O_3$, MgO) 및 미량원소(Sr, Y, La, Yb) 함량 범위는 아다카이트질 화강암의 범주에 포함되며, 지화학적 특성, 지구조환경 및 관입시기가 일본의 북서부 Hida belt에 위치한 Yatsuo심성암체와 유사하다. 연구지역의 암석의 희토류원소 패턴은 경희토류가 중희토류에 비해 부화($(La/Yb)_{CN}=10.6-103.4$)되어 나타나며, Eu의 부(-)이상을 보이지 않는다. ANK vs. A/CNK과 지구조판별도에서 화강암류의 모마그마는 I-type의 화산호 화강암의 특성을 나타내며, 이자나기(Izanagi)판의 섭입에 의한 압축장 응력이 작용하는 대륙연변부에서 생성된 것으로 해석된다.

Abstract AI-Helper 아이콘AI-Helper

Jurassic granitoids in the northeastern part of the Yeongnam Massif are possibly the result of intensive magmatic activities that occurred in response to subduction of the proto-Pacific plate beneath the northeast portion of the Eurasian plate. Geochemical studies on the granitic rocks are carried o...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 또한, 울진 지역의 심성암체에 대한 연구에 있어서 영남육괴의 북동부와 경상분지 북부의 쥐라기 화강암은 지화학 자료와 연령 분석 자료의 부족으로 울진 지역과 대조함에 있어서 어려움이 있다. 따라서 연령 분석 자료에 근거하여 쥐라기 시대에 지화학 자료가 제시되어 있는 옥천대와 영남육괴의 화강암체에 대한기발표된 자료를 본 연구에서 수행된 울진지역의 자료와 함께 비교 연구함으로써 울진 지역의 화성활동 연구에 필요한 지화학적 자료를 제시하고 이 암체를 형성한 마그마의 유형과 성인 및 지화학적 특성을 규명하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
한반도 중생대 화성활동을 지체구조적 관점에서 보면 무엇과 밀접한 관련이 있는가? 한반도 중생대 화성활동은 지체구조적 관점에서 동북아시아의 형성과 밀접한 관련이 있다. 고생대 말에서 쥐라기 초기(250-210 Ma)에 걸쳐 아시아판의 형성 이후 220-180 Ma 사이에 아시아대륙 아래로 이자나기(Izanagi)판의 해령 섭입이 일어나면서 남중국과 한반도 및 일본에서는 활발한 화성활동이 일어났으며(Maruyama, 1997; Choi et al.
영남육괴 북동부에 분포하는 쥐라기 심성암체은 무엇에 의한 결과물인가? 영남육괴 북동부에 분포하는 쥐라기 심성암체들은 유라시아대륙의 동북부지역 아래로 고태평양판의 섭입에 의해서 야기된 활발했던 화성활동의 산물이다. 지화학적 연구를 통하여 이 지역에 분포하는 화강암류의 성인과 지구조환경을 유추하여 보았다.
울진 지역 화강암류에 대한 주성분원소, 미량원소, 희토류원소에 대한 지화학적 특징으로 유추한 마그마의 유형 및 성인 그리고 지구조적인 환경은 어떠한가? 1. 울진 지역의 중생대 쥐라기 화강암류는 비알칼리암 중 칼크-알칼리계열의 I-type 화강암류로, 마그마의 대부분이 metaluminous의 특성을 가진다. 주성분 원소와 미량원소 및 희토류원소의 함량 및 분화 경향은 전형적인 대보화강암의 범위에 해당되지만, 지역별로 분화에 따른 변화도의 기울기를 비교했을때, 일정한 SiO2 함량 범위 내에서 차이를 보이므로 이들 화강암류가 동일 기원 마그마의 가능성은 배제된다. 2. 울진 지역의 화강암류는 높은 SiO2, Al2O3 및 Sr의 함량과 낮은 MgO, Y, Yb의 값을 가지며 미량 원소와 희토류원소의 특성은 일본의 Hida belt내의 Yatsuo심성암체와 비슷하며, Sr/Y vs. Y과 La/Yb vs. Yb 판별도에서 아다카이트의 영역에 도시되는 등 아다카이틱한 특성을 보인다. 3. 조구조 판별도에 도시해 본 결과, 울진 지역은 화산호(VAG) 또는 동시 충돌형(syn-COLG) 화강암에 해당되며, 중생대 트라이아스기 말에서 쥐라기 초기에 고태평양판의 섭입환경에 의하여 동북아시아에서 일어난 대보화성활동의 영향으로 대륙주변부의 환경에서 생성되었음을 시사한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (55)

  1. Arakawa, Y. and Shinmura, T., 1995, Nd-Sr isotopic and geochemical characteristics of two contrasting types of calc-alkaline plutons in the Hida belt. Chemical Geology, 124, 217-232. 

  2. Arakawa, Y., Saito, Y., and Hiroshi Amakawa, 2000, Crustal development of the Hida belt, Japan: Evidence from Nd-Sr isotopic and chemical characteristics of igneous and metamorphic rocks. Tectonophysics, 328, 183-204. 

  3. Castillo, P.R., Janney, P.E., and Solidum, R.U., 1999, Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134, 33-51. 

  4. Chang, T.W., 1990, Relative timing of shear zone formation and granite emplacement in the Yechon shear zone, Journal of Korean Institute of Mining Geology, 23, 453-463. (in Korean) 

  5. Cheong, C.S. and Chang H.W., 1996a, Geochemistry of the Daebo Granitic Batholith in the Central Ogcheon Belt, Korea: A Preliminary Report. Economic and Environmental Geology, 29, 483-493. (in Korean) 

  6. Cheong, C.S. and Chang, H.W., 1996b, Tectonomagmatism, -metamorphism, and -mineralization of the central Ogcheon belt, Korea (I): Sr, Nd and Pb isotopic systematics and geochemistry of granitic rocks in the Boeun area. Journal of the Geological Society of Korea, 32, 91-116. (in Korean) 

  7. Cheong, C.S., Kee, W.S., Jeong, Y.J., and Jeong, G.Y., 2006, Multiple deformations along the Honam shear zone in southwestern Korea constrained by Rb-Sr dating of synkinematic fabrics: Implications for the Mesozoic tectonic evolution of northern Asia. Lithos, 87, 289-299. 

  8. Cheong, C.S., Kil, Y.W., Kim, J.M., Jung, Y.J., and Im, C.B., 2004, Geochemical characteristics of Precambrian basement rocks in the Jukbyeon area, northeastern Yeongnam massif, Korea. Journal of the Geological Society of Korea, 40, 481-499. (in Korean) 

  9. Cheong, C.S. and Kwon, S.T., 1999, Sm-Nd Mineral Ages of Pre-Cretaceous Granitic Rocks in the Northern Gyeongsang Basin, Korea. Journal of the Geological Society of Korea, 35, 159-166. (in Korean) 

  10. Choi, S.G., Pak, S.J., Kim, S.W., Kim, C.S., and Oh, C.W., 2006, Mesozoic Gold-Silver Mineralization in South Korea: Metallogenic Provinces Reestimated to the Geodynamic Setting. Economic and Environmental Geoogy, 39, 567-581. (in Korean) 

  11. Chon, H.T., Cheong, Y.W., and Son, C.I., 1994, Multivariate Analysis of the Geochmical Data of Tinbearing Granitoids in the Sangdong and the Ulchin Areas, Korea. Economic and Environmental Geology, 27, 237-246. (in Korean) 

  12. Chon, H.T. and Son, C.I., 1995, Mineralogical Chemistry of Granitoids and Pegmatites in the Sangdong and the Ulchin Areas. Economic and Environmental Geology, 28, 33-41. (in Korean) 

  13. Condie, K.C., 1973, Archean magmatism and crustal thickening. Geological Society of America Bulletin, 84, 2981-2992. 

  14. Cullers, R.L. and Graf, J.L., 1984, Rare earth elements in igneous rocks of the continental crust: intermediate and Silicic rocks-ore petrogenesis; in Henderson, P., Rare earth elements geochemistry, Elsevier Science Publication. 

  15. Defant, M.J. and Drummond, M.S., 1990, Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347, 662-665. 

  16. Defant, M.J. and Kepezhinskas, P.K., 2001, Evidence suggests slab melting in arc magmas. EOS (Transactions, American Geophysical Union), 82, 65-69. 

  17. Frster, H.J., Tischendorf, G., and Trumbull, R.B., 1997, An evaluation of the Rb vs. (Y+Nb) discrimination diagram to infer tectonic setting of licic igneous rocks. Lithos, 40, 261-293. 

  18. Hong, Y.K., 1987, Geochemical Characteristics of Precambrian, Jurassic and Cretaceous Granites in Korea. Journal of Korean Institute of Mining Geology, 20, 35-60. (in Korean) 

  19. Irivine, T.N. and Baragar, W.R.A., 1971, A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Science, 8, 523-548. 

  20. Ishihara, S., Jin, M.S., and Terashima, S., 2005, Mo-related Adakitic Granitoids from Non-island-arc Setting: Jecheon Pluton of South Korea. Resource Geology, 55, 385-396. 

  21. Jin, M.S., 1980, Geology and Isotopic Contrasts of the Jurassic and the Cretaceous Granites in South Korea. Journal of the Geological Society of Korea, 16, 205-215. 

  22. Jin, M.S., 1986, Ca, Na, K, Rb, Zr, Nb and Y abundances of the Cretaceous to Early Tertiary granitic rocks in Southern Korea and their tectonic implications. Memoir for Prof. Lee, S. M.'s 60th Birthday, 195-209. (in Korean) 

  23. Jin, M.S. and Jang, B.A., 1999, Thermal history of the Late Triassic to Early Jurassic Yeongju-Chunyang Granitoid in the Sobaegsan Massif, South Korea, and its Tectonic Implication. Journal of the Geological Society of Korea. 35, 189-200. (in Korean) 

  24. Jin, M.S., Shin, H.J., and Kwon, S.K., 2005, Igneous rocks and igneous activities in the Korean peninsula. Korea Institute of Geoscience and Mineral Resources, Dae jeon, Korea, 310 p. (in Korean) 

  25. Jwa, Y.J., 1996, Petrochemistry and magma process of Jurassic Boeun granodiorite in the central Ogcheon belt. Journal of the Petrological Society of Korea, 5, 188-199. (in Korean) 

  26. Kang, J.H., Kim, N.H., Song, Y.S., and Park, K.H., 2006, Deformation history of Precambrian metamorphic rocks of Sobaegsan Massif in Giseong-myeon area, Uljin-gun, Gyeongsangbuk-do, Korea. Journal of the Petrological Society of Korea, 15, 49-59. (in Korean) 

  27. Kay, R.W., 1978, Aleutian magnesian andesites; melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4, 117-132. 

  28. Kim, J.H., Cheong, S.W., and Kihm, Y.H., 2000, Geological Structures of the Southern Jecheon, Korea. Journal of the Korean Earth Science Society, 21, 302-314. (in Korean) 

  29. Kim, J.W. and Lee, Y.J., 1993, Phase Transition of K - feldspar in the Plutonic Rocks from the Vicinity of Yongdok - Uljin Area, Northeastern Gyeongsang Basin, Korea. Journal of the Korean Earth Science Society, 14, 316-325. (in Korean) 

  30. Kim, K.H., 1992, Geochemical Study of Some Mesozoic Granitic Rocks in South Korea. Journal of the Korean Institute of Mining Geology, 25, 435-446. (in Korean) 

  31. Kim, N.H., Park, K.H., Song, Y.S., and Kang, J.H., 2002, A note on absence of Giseong Series and relation of Precambrian Pyeonghae Series and Wonnam Series of Pyeonghae-Uljin area. Journal of the Petrological Society of Korea, 11, 271-277. (in Korean) 

  32. Kim, S.J., Noh, J.H., and Choi, J.B., 1988, Crystal Chemisty of Ca - Garnets from Ulchin Pb - Zn Deposits. Journal of Mineralogical Society of Korea, 1, 20-31. (in Korean) 

  33. Kim, Y.J., Cho, D.L., and Hong, S.S., 1986, Petrochemical Study of Alkali Granite in northern Area of the Uljin Mine. Journal of the Korean Institute of Mining Geology, 19, 123-131. (in Korean) 

  34. Lee, K.M. and Lim, B.Y., 2001, Detailed investigation report (limestone - Uljin area). Korea Resources Corporation. (in Korean) 

  35. Lee, J.I. and Lee, M.S., 1991, Mineralogy and petrology on the granitic rocks in the Youngju area, Kyoungsang Buk-Do, Korea. Journal of the Geological Society of Korea, 27, 626-641. (in Korean) 

  36. Lee, S.M., Kim, H.S., and Oh, I.S., 1986, Metamorphic Petrology of Precambrian Gneisses in Samcheok Jukbyeon Area. Journal of the Geological Society of Korea, 22, 257-277. (in Korean) 

  37. Maniar, P.D. and Piccoli, P.M., 1989, Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635-643. 

  38. Martin, H., Smithies, R.H., Rapp, R., Moyen, J.F., and Champion, D., 2005, An overview of adakite, tonalitetrondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 79, 1-24. 

  39. Maruyama, S., Isozaki, Y., Kimura, G., and Terabayashi, M., 1997, Paleogeographic maps of the Japanses Islands: Plate tectonic synthesis from 750 Ma to the present. The Island Arc, 6, 121-142 

  40. Moon, S.H. and Park, H.I., 1994, Alterations of Granite Gneiss and their Genetic Relationship to Tin Mineralization in the Uljin Area. Journal of the Geological Society of Korea, 30, 125-139. (in Korean) 

  41. Oh, C.W., 2006, A new concept on tectonic correlation between Korea, China and Japan: Histories from the late Proterozoic to Cretaceous. Gondwana Research, 9, 47-61. 

  42. Park, H.I. and Lee, S.M., 1984, Tin, Tungsten Mineralization in Bonghwa -Uljin Area. Journal of the Korean Institute of Mining Geology, 17, 1-15. (in Korean) 

  43. Pearce, J.A., Harris, N.B.W., and Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956-983. 

  44. Sagong, H., Kwon, S.T., Cho, D.R., and Jwa, Y.J., 2005, Relative Magma Formation Temperatures of the Phanerozoic Granitoids in South Korea Estimated by Zircon Saturated Temperature. Journal of the Petrological Society of Korea, 14, 83-92. (in Korean) 

  45. Sajona, F.G., Maury, R.C., Pubellier, M., Leterrier, J., Bellon, H., and Cotten, J., 2000, Magmatic source enrichment by slab-derived melts in a young postcollision setting, central Mindanao (Philippines). Lithos, 54, 173-206. 

  46. Sun, S.S. and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. In: Magmatism in the ocean basins. Geological Society Special Publication, 42, 313-345. 

  47. Taylor, S.R., 1965, The application of trace element data to problems petrology. Physics and chemistry of the Earth, 6, 133-213. 

  48. Tsusue, A., Dai, K., Mizuta, T., and Tamai, T., 1990, A comparision of Jurassic granitoids between the Hida belt and South Korea. Mining Geology, 40, 365-384. 

  49. Wang, Q., McDermott, F., Xu, J.F., Bellon, H., and Zhu, Y.T., 2005, Cenozoic K-rich adakitic volcanics in the Hohxil area, northern Tibet: lower crustal melting in an intracontinental setting. Geology, 33, 465-468. 

  50. Wee, S.M., Choi, S.G., Ryu, I.C., and Shin, H.J., 2006, Geochemical Characteristics of the Cretaceous Jindong Granites in the Southwestern Part of the Gyeongsang Basin, Korea: Focussed on Adakitic Signatures. Economic and Environmental Geology, 39, 555-566. (in Korean) 

  51. Wee, S.M. and Park, J.Y., 2009, Geochemistry and petrogenesis of adakitic granitoids from Bognae area in the southwestern part of the Yeongnam Massif, Korea. Journal of the Korean Earth Science Society, 30, 427-443. (in Korean) 

  52. White, A.J.R. and Chapell, B.W., 1983, Granitoid types and their distribution in the Lanchlan Fold belt, south east Australia. Geological Society of America, Memoir, 159, 21-33. 

  53. Yun, H.S., Kim, D.O. and Park, S.H., 1999, Geochemical characteristics of Ogcheon granite in Ogcheon area. Journal of the Petrological Society of Korea, 8, 81-91. (in Korean) 

  54. Yun, H.S. and Hong, S.S., 2003, Geochemistry of granites in the southern Gimcheon area of Korea. Journal of the Petrological Society of Korea, 12, 16-31. (in Korean) 

  55. Yun, S.C. and Shin, B.W., 1963, 1/50000 scale Explanatory text of the Geological map of Uljin Area. Geological Survey of Korea, 27 p. (in Korean) 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로