$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

온톨로지 기반 영화 메타데이터간 연관성을 활용한 영화 추천 기법

The Ontology Based, the Movie Contents Recommendation Scheme, Using Relations of Movie Metadata

초록

최근 IPTV와 스마트 TV 등의 등장과 영상 콘텐츠를 시청하고 검색할 수 있는 웹 서비스의 등장으로 영상 콘텐츠의 접근이 용이해져 사용자들은 자신이 원하는 콘텐츠를 찾고자 하는 요구가 증가하고 있다. 하지만 서비스되는 콘텐츠의 양이 방대하여 영상 콘텐츠를 검색할 때 사용하는 키워드 기반의 검색은 많은 양의 결과를 가져오며 사용자가 필요로 하지 않은 결과가 검색된다. 따라서 사용자가 원하는 콘텐츠의 검색 시간과 노력이 증가 하게 되었다. 이를 극복 하기 위해 콘텐츠 추천 및 검색에 대한 연구가 수행되어 왔다. 기존의 연구에는 사용자의 선호도 분석을 통하여 영상 콘텐츠를 추천하거나 비슷한 성향을 가지는 사용자들을 분류하여 콘텐츠를 추천하는 기법들이 연구되어 왔다. 본 논문에서는 영상 콘텐츠 중 영화의 추천을 위해 사용자 개인의 영화 메타데이터의 선호도를 분석하고, 영화의 메타데이터와 영화의 유사성을 도출하여 이를 기반으로 영화 추천 기법을 제안한다. 영화의 특징을 담고 있고, 사용자의 영화 선호도에 영향을 끼치는 장르, 줄거리, 배우, 키워드 등의 영화 메타데이터를 기반으로 온톨로지를 구축하고, 확률 기법을 통한 메타 데이터간의 유사성을 분석하여 유사 메타데이터를 연결한다. 또한 사용자의 선호도와 그룹을 정의하고, 사용자 정보를 활용하기 위한 사용자 모델을 정의한다. 제안하는 추천 기법은 1) 사용자 정보기반의 후보 영화 검색 컴포넌트, 2) 사용자 선호기반의 후보 영화 검색 컴포넌트, 3) 1)과 2)의 결과를 통합하고 가중치를 부여하는 컴포넌트, 4) 최종결과의 분석을 통한 개인화된 영화 추천 컴포넌트 등 총 4가지 컴포넌트로 구성된다. 제안하는 추천 기법의 실험을 위하여 20대 남/녀 10명씩 20명을 대상으로 실험을 진행하였으며, 실험결과 평균 Top-5에서 2.1개 Top-10에서 3.35개 Top-20에서 6.35의 영화가 보고 싶은 영화로 선택되었다. 본 논문에서는 영화 메타데이터간의 연관성 도출을 통하여 영화간의 유사성을 도출하고 이를 기반으로 사용자의 기본적인 정보를 활용한 추천뿐만 아니라 사용자가 예상하지 못한 영화의 추천이 가능하다.

Abstract

Accessing movie contents has become easier and increased with the advent of smart TV, IPTV and web services that are able to be used to search and watch movies. In this situation, there are increasing search for preference movie contents of users. However, since the amount of provided movie contents is too large, the user needs more effort and time for searching the movie contents. Hence, there are a lot of researches for recommendations of personalized item through analysis and clustering of the user preferences and user profiles. In this study, we propose recommendation system which uses ontology based knowledge base. Our ontology can represent not only relations between metadata of movies but also relations between metadata and profile of user. The relation of each metadata can show similarity between movies. In order to build, the knowledge base our ontology model is considered two aspects which are the movie metadata model and the user model. On the part of build the movie metadata model based on ontology, we decide main metadata that are genre, actor/actress, keywords and synopsis. Those affect that users choose the interested movie. And there are demographic information of user and relation between user and movie metadata in user model. In our model, movie ontology model consists of seven concepts (Movie, Genre, Keywords, Synopsis Keywords, Character, and Person), eight attributes (title, rating, limit, description, character name, character description, person job, person name) and ten relations between concepts. For our knowledge base, we input individual data of 14,374 movies for each concept in contents ontology model. This movie metadata knowledge base is used to search the movie that is related to interesting metadata of user. And it can search the similar movie through relations between concepts. We also propose the architecture for movie recommendation. The proposed architecture consists of four components. The first component search candidate movies based the demographic information of the user. In this component, we decide the group of users according to demographic information to recommend the movie for each group and define the rule to decide the group of users. We generate the query that be used to search the candidate movie for recommendation in this component. The second component search candidate movies based user preference. When users choose the movie, users consider metadata such as genre, actor/actress, synopsis, keywords. Users input their preference and then in this component, system search the movie based on users preferences. The proposed system can search the similar movie through relation between concepts, unlike existing movie recommendation systems. Each metadata of recommended candidate movies have weight that will be used for deciding recommendation order. The third component the merges results of first component and second component. In this step, we calculate the weight of movies using the weight value of metadata for each movie. Then we sort movies order by the weight value. The fourth component analyzes result of third component, and then it decides level of the contribution of metadata. And we apply contribution weight to metadata. Finally, we use the result of this step as recommendation for users. We test the usability of the proposed scheme by using web application. We implement that web application for experimental process by using JSP, Java Script and prot$\acute{e}$g$\acute{e}$ API. In our experiment, we collect results of 20 men and woman, ranging in age from 20 to 29. And we use 7,418 movies with rating that is not fewer than 7.0. In order to experiment, we provide Top-5, Top-10 and Top-20 recommended movies to user, and then users choose interested movies. The result of experiment is that average number of to choose interested movie are 2.1 in Top-5, 3.35 in Top-10, 6.35 in Top-20. It is better than results that are yielded by for each metadata.

저자의 다른 논문

참고문헌 (27)

  1. Adomavicius, G. and A. Tuzhilin, "Toward the next generation of recommender systems : A survey of the state-of-the-art and possible extensions," Knowledge and Data Engineering, Vol.17, No.6(2005), 734-749. 
  2. Bechhofer, S., F. Van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel- Schneider, and L. A. Stein, OWL web ontology language reference, W3C recommendation 10, 2004. Available at http://www.w3.org/TR/owl-ref/(Accessed 15 June 2013). 
  3. Chen, T., W. L. Han, H. D. Wang, Y. X. Zhou, B. Xu, and B. Y. Zang, "Content recommendation system based on private dynamic user profile," Machine Learning and Cybernetics, Vol.4(2007), 2112-2118. 
  4. DAUM Movie of Korea homepage. Available at http://movie.daum.net(Accessed 20 June 2013). 
  5. Drummond, N., M. Horridge, and H. Knublauch, "Protege-OWL tutorial," 8th International Protege Conference, (2005). 
  6. Dublin Core Metadata Initiative, Dublin core metadata element set, version 1.1 : Reference description, 1999. Available at http://dublincore.org/documents/2003/08/26/usageguide (Accessed 17 June 2013). 
  7. Duval, E., W. Hodgins, S. Sutton, and S. L. Weibel, Metadata principles and practicalities, D-lib Magazine, 2002. http://www.dlib.org/dlib/april02/weibel/04weibel.html(Accessed 15 June 2013). 
  8. Gunawardana, A. and G. Shani, "A survey of accuracy evaluation metrics of recommendation tasks," Journal of Machine Learning Research, Vol.10(2009), 2935-2962. 
  9. Horrocks, I., P. F. Patel-Schneider, H. Boley, and S. Tabet, SWRL : A semantic web rule language combining OWL and RuleML, W3C Member submission, 2004. Available at http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/(Accessed 28 June 2013). 
  10. HULU of U.S homepage. Available at http://www.hulu.com(Accessed 25 June 2013). 
  11. Kim, E., S. Pyo, E. Park, and M. Kim, "An automatic recommendation scheme of TV program contents for (IP) TV personalization," Broadcasting IEEE Transaction, Vol.57, No.3 (2011), 674-684. 
  12. Korean Film Council(Korea), Report for Movie Consumption, Korean Film Council, 2011. 
  13. Korean Movie Database KMDb. Available at http://www.kmdb.or.kr(Accessed 25 June 2013). 
  14. Lee, J. S. and S. D. Park, "Performance Improvement of a Movie Recommendation System using Genre-wise Collaborative Filtering," Journal of Intelligence and Information Systems, Vol.13, No.4(2007), 65-78. 
  15. Linden, G., B. Smith, and J. York, "Amazon.com recommendations : Item-to-item collaborative filtering," Internet Computing, Vol.7, No.1 (2003), 76-80. 
  16. Mathes, A., "Folksonomies-cooperative classification and communication through shared metadata," Computer Mediated Communication, Vol.47, No.10(2004). 
  17. McGuinness, D. L. and F. Van Harmelen, OWL web ontology language overview, W3C recommendation 10, 2004. Available at www.w3.org/TR/owl-features(Accessed 13 June 2013). 
  18. NETFLIX of U.S. homepage. Available at http://www.netflix. com(Accessed 25 June 2013). 
  19. Noy, N. F. and D. L. McGuinness, Ontology development 101 : A guide to creating your first ontology, Stanford Knowledge Systems Laboratory Tech, (2001). 
  20. Stamou, G., J. van Ossenbruggen, J. Z. Pan, G. Schreiber, and J. R. Smith, "Multimedia annotations on the semantic web," Multimedia IEEE, Vol.13, No.1(2006), 86-90. 
  21. Su, X. and T. M. Khoshgoftaar, "A survey of collaborative filtering techniques," Advances in Artificial Intelligence, (2009), 1-20. 
  22. Tintarev, N. and J. Masthoff, "A survey of explanations in recommender systems," Proceedings of the IEEE 23rd International Conference on Data Engineering Workshop, (2007), 801-810. 
  23. Tsunoda, T. and M. Hoshino, "Automatic metadata expansion and indirect collaborative filtering for TV program recommendation system," Multimedia Tools and Applications, Vol.36, No.1-2(2008), 37-54. 
  24. Vallet, D., M. Fernandez, and P. Castells, "An ontology-based information retrieval model," The Semantic Web : Research and Applications 2nd European Semantic Web Conference, (2005), 455-470. 
  25. Weng, S. S. and M. J. Liu, "Personalized product recommendation in e-commerce," 2004 IEEE International Conference on e-Technology, e-Commerce, and e-Services, (2004), 413-420. 
  26. W3C Owl Working Group, OWL 2 web ontology language document overview, W3C Recommendation, 2009. Available at http://www.w3/org/TR/owl-overview(Accessed 13 June 2013). 
  27. Yun, B. D., J. W. Kim, Y. S. Cho, and S. G. Kang, "Personalized Recommendation System for IPTV using Ontology and K-medoids," Journal of Intelligence and Information Systems, Vol.16, No.3(2010), 147-161. 

이 논문을 인용한 문헌 (2)

  1. Yang, Heetae ; Cha, Jaehong ; Ahn, Minje ; Lim, Jongtae ; Li, He ; Bok, Kyoungsoo ; Yoo, Jaesoo 2013. "Social Network Group Recommendation Using Dynamic User Profiles and Collaborative Filtering" 한국콘텐츠학회논문지 = The Journal of the Korea Contents Association, 13(11): 11~20 
  2. Lee, Gang-Won ; Park, Sei-Kwon ; Ryu, Seung-Wan ; Shin, Dong-Cheon 2014. "An Ontology Model for Public Service Export Platform" 지능정보연구 = Journal of intelligence and information systems, 20(1): 149~161 

원문보기

원문 PDF 다운로드

  • ScienceON :
  • KCI :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. (원문복사서비스 안내 바로 가기)

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일