$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

그래핀 기반 투명전극 : 현황과 전망
Graphene based Transparent Conductive Film : Status and Perspective 원문보기

한국세라믹학회지 = Journal of the Korean Ceramic Society, v.50 no.5, 2013년, pp.309 - 318  

이승기 (성균관대학교 신소재공학부) ,  안종현 (연세대학교 전기전자공학부)

Abstract AI-Helper 아이콘AI-Helper

Graphene has attracted considerable attention since its first production from graphite in 2004, due to its outstanding physical and chemical properties. The development of production methodsfor large scale, high quality graphene films is an essentialstep toward realizing graphene applications such a...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 이런 상황속에서 2004년 그래핀의 등장은 기초과학분야와 반도체소자 응용분야뿐만 아니라, 투명전극 소재개발분야에 큰 반향을 가져오기에 충분했다. 본 논문에서는 그래핀의 대면적 제조를 위한 최근 연구 개발 동향과 함께 그래핀 투명전극의 다양한 응용분야에 대한 연구 결과와 향후 연구 발전 방향에 대해 살펴보고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
실리콘/그래핀 접합 태양전지의 장점은? 35) 그래핀 전극을 통해 흡수된 빛은 그래핀/실리콘 접합면에서 전자와 정공으로 분리되어 N형의 실리콘쪽으로 전자가 흐르고 P 형 특성을 보이는 그래핀쪽으로 정공이 흘러 전하를 생성하고 생성된 전하는 그래핀 투명전극과 실리콘 하부 전극을 통해 포집된다. 그래핀 필름이 투명전극 역할뿐만 아니라, P 형 반도체 역할까지 동시에 수행하여 소자 구조를 단순화할 수 있는 장점이 있다. 태양전지 효율은 실리콘/그래핀의 접합면 특성과 그래핀 면저항값에 크게 좌우되기 때문에, 현재 그래핀의 전도도를 향상시키고 접합 특성을 개선하여 광전환 효율을 극대화하는 연구가 활발히 진행되고 있다.
그래핀이란? 그래핀은 탄소원자의 강한 공유결합으로 형성된 단원자층으로 이루어진 2차원 평면 구조를 갖는 탄소 나노소재이다. 이러한 그래핀은 적층되면 3 차원의 흑연 (graphite)구조를, 말리면 1 차원 탄소나노튜브 (carbon nanotubes)와 0 차원의 공 모양(buckyball)을 이루는 물질로 다양한 저차원 나노 현상을 연구하는데 그동안 중요한 모델이 되어왔다.
그래핀 기반 투명전극은 어떤 분야에서 ITO를 대체할 수 있는가? 그래핀 기반 투명전극은 터치센서, 태양전지, 조명소자와 반도체소자 등 다양한 분야에서 기존 투명전극 소재인 ITO의 대체 소재로서 응용될 수 있으며, 그래핀이 갖고 있는 우수한 기계적 물성을 이용하여 차세대 정보화기기로 등장할 플렉서블, 웨어러블 전자소자를 위한 플렉서블 투명전극 소재로의 활용이 기대된다. 그래핀이 학문적 연구 단계를 넘어서서 실제 상업화되기 위해서는 고품질의 그래핀 필름을 안정적으로 제조할 수 있는 기술개발이 필수적으로 요구되고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (47)

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, 306, 666-69 (2004). 

  2. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, "Superior Thermal Conductivity of Single-Layer Graphene," Nano Lett., 8, 902-07 (2008). 

  3. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, "Control of Graphene's Properties by Reversible Hydrogenation : Evidence for Graphene," Science, 323, 610-13 (2009). 

  4. R. Prasher, "Graphene Spreads the Heat," Science, 328, 185-86 (2010). 

  5. J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, "Practical Chemical Sensors from Chemically Derived Graphene," ACS Nano, 3, 301-06 (2009). 

  6. T. Kuila, S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee, "Recent Advances in Graphene-based Biosensors," Biosens. Bioelectron., 26, 4637-48 (2011). 

  7. C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, 321, 385-88 (2008). 

  8. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine Structure Constant Defines Visual Transparency of Graphene," Science, 320, 1308 (2008). 

  9. B. H. Lee, S. H. Park, H. Back, and K. Lee, "Novel Film-Casting Method for High-Performance Flexible Polymer Electrodes," Adv. Funct. Mater., 21, 487-93 (2011). 

  10. X. Y. Zeng, Q.-K. Zhang, R.-M. Yu, and C.-Z. Lu, "A New Transparent Conductor: Silver Nanowire Film Buried at the Surface of a Transparent Polymer," Adv. Mater., 22, 4484-88 (2010). 

  11. Y. Zhu, Z. Sun, Z. Yan, Z. Jin, and J. M. Tour, "Recent Rational Design of Hybrid Graphene Films for High-Performance Transparent Electrodes," ACS Nano, 5, 6472-79 (2011). 

  12. H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K. Byun, P. Kim, I. Yoo, H. Chung, and K. Kim "Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier," Science, 336, 1140-43 (2012). 

  13. Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and Ph. Avouris, "100-GHz Transistors from Wafer-Scale Epitaxial Graphene," Science, 327, 662 (2010). 

  14. I. Meric, M. Y. Han, A. F. Young, B. O. Zyilmaz, P. Kim, and K. L. Shepard, "Current saturation in Zero-bandgap, Top-gated Graphene Field-effect Transistors," Nature Nanotech., 3, 654-59 (2008). 

  15. X. Wang, L. Zhi, and K.S. Mullen, "Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells," Nano Lett., 8, 323-27 (2008). 

  16. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, "Towards Wafer-size Graphene Layers by Atmospheric Pressure Graphitization of Silicon Carbide," Nature Mater., 8, 203-07 (2009). 

  17. G. Eda, G. Fanchini, and M. Chhowalla, "Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material," Nature Nanotech., 3, 270-74 (2008). 

  18. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Largescale Pattern Growth of Graphene Films for Stretchable Transparent electrodes," Nature, 457, 706-10 (2009). 

  19. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, "Graphene Segregated on Ni Surfaces and Transferred to Insulators," Appl. Phys. Lett., 93, 113103 (2008). 

  20. J.-U. Park, S. Nam, M.-S. Lee, and C. M. Lieber, "Synthesis of Monolithic Graphene-graphite Integrated Electronics," Nature Mater., 11, 120-25 (2012). 

  21. L. Gao,W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao, and H.-M. Cheng, "Repeated Growth and Bubbling Transfer of Graphene with Millimetre-size Single-crystal Grains Using Platinum," Nature Commun., 3, 699 (2012). 

  22. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, "Roll-to-roll Production of 30-inch Graphene Films for Transparent Electrodes," Nature Nanotechnol., 5, 574-78 (2010). 

  23. Y.-J. Kim, S. J. Kim, M. H. Jung, K. Y. Choi, S. Bae, S.-K. Lee, Y. Lee, D. Shin, B. Lee, H. Shin, M. Choi, K. Park, J.-H. Ahn, and B. H. Hong, "Low Temperature Growth and Direct Transfer of Graphene Graphitic Carbon Films on Flexible Plastic Substrates," Nanotechnol., 23, 344016 (2012). 

  24. G. D. Yuan, W. J. Zhang, Y. Yang, Y. B. Tang, Y. Q. Li, J. X. Wang, X. M. Meng, Z. B. He, C. M. L. Wu, I. Bello, C. S. Lee, and S.T. Lee, "Graphene Sheets via Microwave Chemical Vapor Deposition," Chem. Phys. Lett., 467, 361-64 (2009). 

  25. T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, and D. Hobara, "Production of a 100-m-long High-quality Graphene Transparent Conductive Film by Roll-to-roll Chemical Vapor Deposition and Transfer Process," Appl. Phys. Lett., 102, 023112 (2013). 

  26. K. K. Kim, A. Reina, Y. Shi, H. Park, L.-J. Li, Y. H. Lee, and J. Kong, "Enhancing the Conductivity of Transparent Graphene Films via Doping," Nanotechnol., 21, 285205 (2010). 

  27. B. Lee, Y. Chen, F. Duerr, D. Mastrogiovanni, E. Garfunkel, E. Y. Andrei, and V. Podzorov, "Modification of Electronic Properties of Graphene with Self-Assembled Mono layers," Nano Lett., 10, 242732 (2010). 

  28. C.-L. Hsu, C.-T. Lin, J.-H. Huang, C.-W. Chu, K.-H. Wei, and L.-J. Li, "Layer-by-Layer Graphene/TCNQ Stacked Films as Conducting Anodes for Organic Solar Cells," ACS Nano, 6, 503139 (2012). 

  29. J. O. Hwang, J. S. Park, D. S. Choi, J. Y. Kim, S. H. Lee, K. E. Lee, Y.-H. Kim, M. H. Song, S. Yoo, and S. O. Kim, "Workfunction Tunable, N-Doped Reduced Graphene Transparent Electrodes for High-Performance Polymer Light-Emitting Diodes," ACS Nano, 6, 15967 (2011). 

  30. P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. J. Iang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, "Graphene-Based Liquid Crystal Device," Nano Lett., 8, 170408 (2008). 

  31. S. Tongay, K. Berke, M. Lemaitre, Z. Nasrollahi, D. B. Tanner, A. F. Hebard, and B. R. Appleton, "Stable Hole Doping of Graphene for Low Electrical Resistance and High Optical Transparency," Nanotechnol., 22, 425701 (2011). 

  32. X. Hong, J. Hoffman, A. Posadas, K. Zou, C. H. Ahn, and J. Zhu, "Unusual Resistance Hysteresis in n-layer Graphene Field Effect Transistors Fabricated on Ferroelectric Pb( $Zr_{0.2}Ti_{0.8})O_3$ ," Appl. Phys. Lett., 97, 033114 (2010). 

  33. G.-X. Ni, Y. Zheng, S. Bae, C. Y. Tan, O. Kahya, J. Wu, B. H. Hong, K. Yao, and B. Ozyilmaz, "Graphene Ferroelectric Hybrid Structure for Flexible Transparent Electrodes," ACS Nano, 6, 393542 (2012). 

  34. H. Tian, Y. Yang, D. Xie, T.-L. Ren, Y. Shu, C.-J. Zhou, H. Sun, X. Liu, and C.-H. Zhang, "A Novel Flexible Capacitive Touch Pad Based on Graphene Oxide Film," Nanoscale, 5, 890-94 (2013). 

  35. X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, Y. Jia, Z. Li, X. Li, and D. Wu, "Graphene-On-Silicon Schottky Junction Solar Cells," Adv. Mater., 22, 2743-48 (2010). 

  36. X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, "High Eciency Graphene Solar Cells by Chemical Doping," Nano Lett., 12, 2745-50 (2012). 

  37. L. G. D. Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, "Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics," ACS Nano, 4, 2865-73 (2010). 

  38. H. Park, J. A Rowehl, K. K. Kim, V. Bulovicand, and J. Kong, "Doped Graphene Electrodes for Organic Solar Cells," Nanotechnol., 21, 505204 (2010). 

  39. M. Vosgueritchian, D. J. Lipomi, and Z. Bao, "Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes," Adv. Funct. Mater., 22, 421-28 (2012). 

  40. Y. Wang, S. W. Tong, X. F. Xu, B. Ozyilmaz, and K. P. Loh, "Interface Engineering of Layer-by-Layer Stacked Graphene Anodes for High-Performance Organic Solar Cells," Adv. Mater., 23, 1514-18 (2011). 

  41. K. S. Lee, Y. Lee, J. Y. Lee, J.-H. Ahn, and J. H. Park, "Flexible and Platinum-Free Dye-Sensitized Solar Cells with Conducting Polymer-Coated Graphene Counter Electrodes," Chem. Sus. Chem., 5, 379-82 (2012). 

  42. G. Jo, M. Choe, C.-Y. Cho, J. H. Kim, W. Park, S. Lee, W.-K. Hong, T.-W. Kim, S.-J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, "Large-scale Patterned Multi-layer Graphene Films as Transparent Conducting Electrodes for GaN Light-emitting Diodes," Nanotechnol., 21, 175201 (2010). 

  43. K. Chung, C.-H. Lee, and G.-C. Yi, "Transferable GaN Layers Grown on ZnO-Coated Graphene Layers for Optoelectronic Devices," Science, 330, 655-57 (2010). 

  44. T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, "Extremely Efficient Flexible Organic Light-emitting Diodes with Modified Graphene Anode," Nature Photon., 6, 105-10 (2012). 

  45. S.-K. Lee, B. J. Kim, H. Jang, S. C. Yoon, C. Lee, B. H. Hong, J. A. Rogers, J. H. Ch, and J.-H. Ahn, "Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes," Nano Lett., 11, 4642-46 (2011). 

  46. S.-K. Lee, H. Y. Jang, S. Jang, E. Choi, B. H. Hong, J. Lee, S. Park, and J.-H. Ahn, "All Graphene-based Thin Film Transistors on Flexible Plastic Substrates," Nano Lett., 12, 3472-76 (2012). 

  47. J. E. Lee, B. K. Sharma, S.-K. Lee, H. Jeon, B. H. Hong, H.-J. Lee, and J.-H. Ahn, "Thermal Stability of Metal Ohmic Contact Tin Indium-gallium-zinc-oxide Transistors Using Graphene Barrier Layer," Appl. Phys. Lett., 102, 113112 (2013). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로