$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

상세 모델링을 통한 RDX 연소 동특성 분석
An Analysis of Dynamic Characteristics of RDX Combustion Using Rigorous Modeling 원문보기

청정기술 = Clean technology, v.20 no.4, 2014년, pp.398 - 405  

김신혁 (한밭대학교 화학공학과) ,  염기환 (한밭대학교 화학공학과) ,  문일 (연세대학교 화학생명공학과) ,  채주승 (국방과학연구소) ,  김현수 (국방과학연구소) ,  오민 (한밭대학교 화학공학과)

초록
AI-Helper 아이콘AI-Helper

수명이 도래한 고에너지물질의 처리를 위해 환경오염 및 안전성, 처리용량 등을 고려해야 하며, 현재 가장 주목 받고 있는 처리방식은 소각처리공정이다. 그러나 처리대상 고에너지물질의 종류가 매우 다양하고, 특성 또한 다르기 때문에 범용적 기술개발이 힘든 실정이다. 본 연구는 상세 수학적모델링 및 동적모사를 통하여 가장 널리 사용되는 고에너지물질의 하나인 고폭약(research department explosive, RDX)을 플러그흐름반응기(plug flow reactor, PFR)에서 소각 시 반응기 내부의 물리-화학적 변화를 예측하였다. 본 연구에서 사용된 RDX반응은 263개의 상세한 기초반응식으로 이루어져 있으며 43개의 성분이 반응에 관여한다. 모사결과 반응기 내부온도를 제어하여 RDX의 민감성을 통제할 수 있었다. 반응기 내부온도를 1,200 K로 유지 할 때 RDX는 분해반응만 일어나 폭발과 같은 큰 에너지 방출을 막을 수 있었으나 공급되는 열원이 높아져 1,300 K이상 반응기 온도가 증가 시에는 3,000 K 이상의 온도상승을 수반하는 발화반응이 일어났다. 본 연구를 통하여 반응기의 운전온도변화에 따른 RDX반응 특성을 제시함으로써 효율적인 RDX소각로 공정설계 및 운전에 기초가 될 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

In the treatment of spent high energetic materials, the issues such as environmental pollution, safety as well as working capacity should be carefully considered and well examined. In this regard, incineration has been recommended as one of the most promising processes for the disposal of such explo...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 RDX 연소반응을 통한 소각공정의 상세 모델링 및 동적모사를 수행하였다. 소각 공정에서는 RDX액화, 분해반응, 가스반응 등이 온도의 범위에 따라 동시에 일어나며 이를 해석하기 위하여 43가지 화학종과 263개의 반응이 참여하는 반응 메커니즘을 사용하였다.
  • 플러그흐름반응기는 폐기물의 연속적인 처리를 위해 널리 사용되는 원통형소각로와 물리적 특성이 가장 흡사한 반응기이다. 본 연구에서는 RDX소각 시 일어나는 동적 특성을 예측하기 위하여 대상 공정을 1차원의 플러그흐름반응기로 채택하였으며 가스상과 고체상이 존재하는 불균질계에 대한 수학적모델링을 수행하였다.
  • 실제 소각 공정에서의 적용을 위해 본 연구에서는 복합화약의 주 원료인 RDX를 원통형반응기를 이용하여 소각했을 때, 내부에서 일어나는 화학적, 물리적 변화를 예측하고자 한다. 이를 위해 본 연구는 플러그흐름반응기의 질량-에너지-힘수지 식을 도입하여 반응기 내부에서의 물리적 거동을 예측하였으며, 고체상의 RDX가 기체로 연소되는 화학적 변화를 모사하기 위해 불균질계(heterogeneous) 및 반응 메커니즘을 적용하였고, 263개의 자세한 기초반응들을 도입하여 총 43가지의 성분들이 참여하는 반응을 모사하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
RDX이란? RDX는 사이클릭나이트라민(cyclic nitramine)계의 고에너지물질로서 급격한 화학반응을 통하여 생성된 고온, 고압의 기체와 이에 수반하는 에너지를 이용하여 화약 및 탄약, 추진제 제조 등 각종 산업 및 무기체계 계발에 이용되는 주요한 물질이다. 또한, 해당물질은 고에너지물질 중에서도 매우 민감한 특성(외부자극에 쉽게 반응하는 특성)을 가지고 있어, 성능이 뛰어나지만 그에 상응하는 위험성도 가지는 물질이기 때문에 해당물질의 정확한 제어방법을 위한 연구는 활발히 진행되고 있다.
폐기공정에서 소각처리공정의 장점은? 폐기공정에서 소각처리공정은 설계가 간단하고, 운전비용이 낮으며, 후처리 공정을 통해 친환경적으로 고에너지물질의 폐기처리가 가능하다. 그러나 처리대상의 종류가 다양하고 그 특성 또한 매우 다르기 때문에 범용적인 처리 기술이 존재하지 않고 운전시 안전성을 확보할 수 없는 실정이다.
RDX에 대해 다양한 분야에서 연구대상이 되고 있는 이유는? RDX는 사이클릭나이트라민(cyclic nitramine)계의 고에너지물질로서 급격한 화학반응을 통하여 생성된 고온, 고압의 기체와 이에 수반하는 에너지를 이용하여 화약 및 탄약, 추진제 제조 등 각종 산업 및 무기체계 계발에 이용되는 주요한 물질이다. 또한, 해당물질은 고에너지물질 중에서도 매우 민감한 특성(외부자극에 쉽게 반응하는 특성)을 가지고 있어, 성능이 뛰어나지만 그에 상응하는 위험성도 가지는 물질이기 때문에 해당물질의 정확한 제어방법을 위한 연구는 활발히 진행되고 있다. 이러한 RDX에 대한 연구기술 분야는 설계 및 합성으로부터 시작하여, 제조연구[1], 이를 이용한 복합화약 공정개발, 반응 전후의 물리적-화학적 현상에 대한 실험, 무기체계 및 산업 적용성 연구, 성능 및 안전도 평가, 수명이 지났거나 용도 폐기된 물질의 친환경적 처리방법 등 해당 물질의 생성에서부터 최종 처리까지의 다양한 분야가 연구대상이 되고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (12)

  1. Kim, C.-K., Lee, B.-C., Lee, Y.-W., and Kim, H.-S., "Recrystallization of RDX High Energy Material Using N,N-Dimethylformamide Solvent and Supercritical $CO_2$ Antisolvent, " Clean Technol., 15(4), 233-238 (2009). 

  2. Kim, H.-S., "Basic Technologies for the Development of High Explosives, " Korean Chem. Eng. Res., 44(5), 435-443 (2006). 

  3. Park, J.-S., "A study on the Detonation Behavior of Insensitive Explosive by Experiments and Computational Simulations," Ph.D. Dissertation, KAIST, 2011. 

  4. Beckstead, M. W., "Modeling of Combustion and Ignition of Solid-propellant Ingredients," Prog. Energy Combust. Sci., 33, 497-551 (2007). 

  5. Liau, Y.-C., Kim, E. S., and Yang, V., "A Comprehensive Analysis of Laser-Induced Ignition of RDX Monopropellant, " Combust. Flame., 126(3), 1680-1698 (2001). 

  6. Yang, R., Thakre, P., Liau, Y.-C., and Yang, V., "Formation of Dark Zone and Its Temperature Plateau in Solid-propellant Flames: A Review, " Combust. Flame., 145, 38-58 (2006). 

  7. Ermolin, N. E., and Zarko, V. E., "Investigation of the Properties of a Kinetic Mechanism Describing the Chemical Structure of RDX Flames. I. Role of Individual Reactions and Species," Combus. Explos. Shock., 37(2), 123-147 (2001). 

  8. Ermolin, N. E., and Zarko, V. E., "Investigation of the Properties of a Kinetic Mechanism Describing the Chemical Structure of RDX Flames. II. Construction of a Reduced Kinetic Scheme," Combus. Explos. Shock., 37(2), 247-254 (2001). 

  9. Anderson, W. R., and Conner, C. B., "Comparison of Gas-phase Mechanisms Applied to RDX Combustion Model," Proc. Combus. Inst., 32, 2123-2130 (2009). 

  10. Babushok, V. I., Delucia Jr, F. C., Dagdigian, P. J., Gottfiried, J. L., Munson, C. A., Nusca, M. J., and Miziolek, A. W., "Kinetic Modeling Study of the Laser-induced Plasma Plume of Cyclotrimethylenetrinitramine (RDX), " Spectrochim. Acta, Part B., 62, 1321-1328 (2007). 

  11. Chakraborty, D., Muller, R. P., Dasgupta, S., and Goddard, W. A., "A Detailed Model for the Decomposition of Nitramines: RDX and HMX, " J. Comput. Aided Mater. Des., 8, 203-212 (2001). 

  12. http://en.wikipedia.org/wiki/Equation_of_state 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로