$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

지칭개, 띠, 박주가리, 큰부들 잡초종자섬유의 물리화학적 특성
Chemical and Physical Characteristics of Four Weed Seed Fibers (Hemistepta lyrata, Imperata cylindrica var. koenigii, Metaplexis japonica and Typha latifolia) 원문보기

Weed & Turfgrass Science, v.3 no.4, 2014년, pp.253 - 261  

윤아라 (한국화학연구원 융합화학연구본부 바이오화학연구센터) ,  이민우 (한국화학연구원 융합화학연구본부 바이오화학연구센터) ,  김슬기 (한국화학연구원 융합화학연구본부 바이오화학연구센터) ,  김진석 (한국화학연구원 융합화학연구본부 바이오화학연구센터)

초록
AI-Helper 아이콘AI-Helper

본 연구는 지칭개, 박주가리, 큰부들, 띠 종자섬유에 대한 간단한 화학적, 물리적 특성을 파악하고 이의 활용가능성 여부를 알아보기 위해 수행되었다. Holocellulose 함량은 건조중의 74-88.5%로서 박주가리 종자섬유가 가장 높았고 전체적으로 큰부들 줄기의 것(59.5%)보다 높은 경향이었다. 그러나 holocellulose에 대한 alpha-cellulose의 비율은 45-48%로서 종자섬유간 서로 비슷하였다. 리그닌 함량은 17.0% (띠)-24.0% (박주가리), 회분은 0.22% (박주가리)-4.2%(띠), 열수추출물은 2.2% (지칭개)-7.8% (띠), 유기용매 추출물은 0.4% (띠)-6.3% (부들) 함량을 나타내었다. Crystallinity index (CI) 분석에 있어서는 무처리 종자섬유의 경우 지칭개와 박주가리가 약 65%로서 높았고, 띠와 큰부들은 약 54%로서 상대적으로 낮았다. 그러나 화학처리후 얻어진 EDA 섬유간의 CI는 박주가리가 71.8%로서 가장 높았고 미소한 차이이지만 큰부들과 지칭개는 보다 낮아 각각 69.3%, 67.2%를 나타내었다. 한편 열분해 특성은 전형적인 lignocellulose계 패턴을 보였는데 무처리 종자섬유의 경우, 가장 높은 분해율을 나타낸 온도는($%/^{\circ}C$) 박주가리, 큰부들, 지칭개, 띠에서 각각, $312^{\circ}C$, $321.8^{\circ}C$, $331.5^{\circ}C$, $341.6^{\circ}C$로서 박주가리가 가장 낮고, 띠에서 가장 높은 편이었다. 그런데 EDA 섬유의 경우는, 지칭개, 큰부들, 박주가리, 띠에서 각각 $327^{\circ}C$, $327^{\circ}C$, $341.1^{\circ}C$, $360.0^{\circ}C$로서 띠가 가장 높은 편이었다. 이상의 결과들은 종합해 볼 때, 본실험의 종자섬유는 그 자체로 직접 이용할 수 있을 정도의 화학적, 물리적 특징을 가졌으나 일련의 화학처리를 하면 보다 우수한 품질의 섬유를 확보할 수 있으며, 이들은 여러 용도의 천연섬유 자원으로 유용하게 활용될 수 있을 것으로 판단되었다.

Abstract AI-Helper 아이콘AI-Helper

In this study, we investigated several chemical and physical characteristics of 4 weed seed fibers; Hemistepta lyrata (HEMLY), Imperata cylindrica var. koenigii (IMPCK), Metaplexis japonica (METJA) and Typha latifolia (TYPLA). In chemical composition, there were 74 (TYPLA)-88.5% (METJA) of holocellu...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Holocellulose 중 분자량이 상대적으로 커서 활용가치가 높은 것은 α-cellulolse 이기 때문에 그 함량이 holocellulose 대비 어느 정도인지를 알아보았다.
  • , 2014)에서 지칭개, 박주가리 등 몇가지 잡초종자섬유가 활용가능성이 높음을 제시하였다. 따라서 본 연구에서는 지칭개, 박주가리, 큰부들, 띠 종자섬유에 대해서 이들의 간단한 화학적, 물리적 분석을 통해서 활용가능성을 검토함과 동시에 향후 여러 분야로의 활용을 위한 물리화학적 기초자료를 제공하고자 실험하였다.
  • 본 연구는 지칭개, 박주가리, 큰부들, 띠 종자섬유에 대한 간단한 화학적, 물리적 특성을 파악하고 이의 활용가능성 여부를 알아보기 위해 수행되었다. Holocellulose 함량은 건조중의 74-88.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
바이오복합재료 연구분야란? (2013)은 식물섬유의 주성분인 셀룰로오스 시장분야를 9가지로 즉, 1) 직물, 2) 부직포, 3) 목재 및 판재, 4) 펄프, 종이 및 골판지, 5) 셀룰로오스 용해 펄프(Cellulose dissolving pulp), 6) 셀룰로오스계 필름, 7) 건축자재, 8) 셀룰로오스계 섬유 복합재료, 9) 녹색화합물(Green chemicals)로 나누어 제시하고 있다. 이들 중 최근 가장 관심을 받고 있는 것은 위에서 언급한 바와 같은 장점 때문에 바이오복합재료(bio-composite) 연구분야, 즉 식물섬유를 여러가지로 처리하여 자체만으로 또는 화학수지와 복합시켜 새로운 기능의 소재를 만들거나, 생분해성이 높은 수지 또는 경량화 소재 등을 개발하여 전자, 자동차, 화장품, 의료 및 농식품용 화학소재로 활용하려는 분야이다(Anuar and Zuraida, 2011; Faruk et al., 2012; Klemm et al.
식물섬유를 기원에 따라 분류하면? , 2014). 식물섬유는 기원에 따라 활엽수 섬유, 침엽수 섬유, 인피섬유, 잎섬유, 종자섬유, 짚섬유(straw fiber) 등 여러가지가 있으며(Thakur and Thakur, 2014), 식물섬유를 비롯해 매년 지구전체에서 합성, 분해되는 천연섬유는 1010-1011 톤에 이른다고 한다(Helbert, 1996).
지칭개, 박주가리, 큰부들, 띠 종자섬유 중 Holocellulose 함량이 가장 높은 것은? 본 연구는 지칭개, 박주가리, 큰부들, 띠 종자섬유에 대한 간단한 화학적, 물리적 특성을 파악하고 이의 활용가능성 여부를 알아보기 위해 수행되었다. Holocellulose 함량은 건조중의 74-88.5%로서 박주가리 종자섬유가 가장 높았고 전체적으로 큰부들 줄기의 것(59.5%)보다 높은 경향이었다. 그러나 holocellulose에 대한 alpha-cellulose의 비율은 45-48%로서 종자섬유간 서로 비슷하였다.
질의응답 정보가 도움이 되었나요?

참고문헌 (39)

  1. Anuar, H. and Zuraida, A. 2011. Improvement in mechanical properties of reinforced thermoplastic elastomer composite with bast fibre. Compos. Part B 42:462-465. 

  2. Bodirlau, R., Teaca, C.-A. and Spiridon, I. 2014. Green composites comprising thermoplastic corn starch and various cellulose-based fillers. BioRes. 9(1):39-53. 

  3. Chen, G. 2011. Seed and seed fibers in fruit of Metaplexis japonica used in health-care fabrics or quilt fabrics. Patent No. Peop. Rep. China. CN102286797A. 

  4. Elenga, R.G., Dirras, G.F., Goma Maniongui, J., Djemia, P. and Biget, M.P. 2009. On the microstructure and physical properties of untreated raffia textiles fiber. Compos. Part A 40:418-422. 

  5. Faruk, O., Bledzki, A.K., Fink, H.P. and Sain, M. 2012. Biocomposites reinforced with natural fibers: 2000-2010. Prog. Polym. Sci. 37:1552-1596. 

  6. Fiore, V., Valenza, A. and Di Bella, G. 2011. Artichoke (Cynara cardunculus L.) fibres as potential reinforcement of composite structures. Compos. Sci. Technol. 71:1138-1144. 

  7. Fiore, V., Scalici, T. and Valenza, A. 2014. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohydr. Polym. 106:77-83. 

  8. Fiserova, M., Gigac, J., Majtnerova, A. and Szeiffova, G. 2006. Evaluation of annual plants (Amaranthus caudatus L., Atriplex hortensis L., Helianthus tuberosus L.) for pulp production. Cellul. Chem. Technol. 40(6):405-412. 

  9. Guimaraes, J.L., Frollini, E., da Silva, C.G., Wypych, F. and Satyanarayana, K.G. 2009. Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Ind. Crops Prod. 30:407-415. 

  10. Helbert, W., Cavaille, J.Y. and Dufresne, A. 1996. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. J. Polym. Compos. 17:604-611. 

  11. Indran, S., Raj, R.E. and Sreenivasan, V.S. 2014. Characterization of new natural cellulosic fiber from Cissus quadrangularis root. Carbohydr. Polym. 110:423-429. 

  12. Jimenez, L., Angulo, V., Ramos, E., De la Torre, M.J. and Ferrer, J.L. 2006. Comparison of various pulping processes for producing pulp from vine shoots. Ind. Crops. Prod. 23:122-130. 

  13. Kabir, M.M., Wang, H., Lau, K.T. and Cardona, F. 2012. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos. Part B 43:2883-2892. 

  14. Keijsers, E.R.P., Yilmaz, G. and van Dam, J. E.G. 2013. The cellulose resource matrix. Carbohydr. Polym. 93:9-21. 

  15. Khristova, P. and Tissot, M. 1995. Soda-anthraquinone pulping of Hibiscus sabdariffa (karkadeh) and Calotropis procera from Sudan. Bioresour. Technol. 53(1):67-72. 

  16. Khiari, R., Mhenni, M.F., Belgacem, M.N. and Mauret, E. 2010. Chemical composition and pulping of date palm rachis and Posidonia oceanica-A comparison with other wood and nonwood fibre sources. Bioresour. Technol. 101:775-780. 

  17. Kim, D.S. and Park, S.H. 2009. Weeds of Korea-Morphology, physiology, ecology. Rijeon Agricutural Resources Publications, Seoul, Korea. (In Korean) 

  18. Kim, W.J., Lee, S.E. and Seo, Y.B. 2010. Sugar extraction by pretreatment and soda pulping from cattail (Typhaceae) (2) Pulping characteristics. J. Korea TAPPI 42(3):14-21. (In Korean) 

  19. Klemm, D., Kramer, F., Moritz, S., Lindstrom, T., Ankerfors, M., Gray, D., Dorris, A., et al. 2011. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. 50:5438-5466. 

  20. Lavoie, M.C. 2012. Renewable oil absorbent and method thereof. US 20120111797 A. 

  21. Maity, S., Mohapatra, H.S. and Chatterjee, A. 2014. New generation natural fiber-akund floss. Melliand Int. 20(1):22-24. 

  22. Manikandan, V., Velmurugan, R., Ponnambalam, S.G. and Thomas, S. 2004. Mechanical properties of short and unidirectional aligned Palmyra fiber reinforced polyester composite. Int. J. Plast. Technol. 8:205-216. 

  23. Mohanty, A.K., Misra, M. and Hinrichsen, G. 2000. Biobibers, biodegradable polymers and biocomposites: An overview. Macrom. Mater. Eng. 266/277:1-24. 

  24. Morais, J.P.S., Rosa, M.F., Filho, M.M.S., Nascimento, L.D., Nascimento, D.M., Cassales, A.R., et al. 2013. Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr. Polym. 91:220-235. 

  25. Mwaikambo, L.Y. and Ansell, M.P. 2002. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. Appl. Polym. Sci. 84:2222-2234. 

  26. Pandey, J. K., Ahn, S. H., Lee, C. S., Mohanty, A.K. and Misra, M. 2010. Recent advances in the application of natural fiber based composites. Macrom. Mater. and Eng. 295:975-989. 

  27. Reddy, M.M., Vivekanandhan, S., Misra, M., Bhatia, S.K. and Mohanty, A.K. 2013. Biobased plastics and bionanocomposites: Current status and future opportunities. Prog. Polym. Sci. 38:1653-1689. 

  28. Reddy, N. and Yang, Y. 2005. Structure and properties of high quality natural cellulose fibers from corn stalks. Polym. 46(15):5494-500. 

  29. Saravanakumar, S.S., Kumaravel, A., Nagarajan, T., Sudhakar, P. and Baskaran, R. 2013. Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr. Polym. 92:1928-1933. 

  30. Segal, L., Creely, J.J., Martin, A.E.J. and Conrad, C.M. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Text. Res. J. 29:786-794. 

  31. Siddhanta, A.K., Chhatbar, M.U., Mehta, G.K., Sanandiya, N.D., Kumar, S., et al. 2011. The cellulose contents of Indian seaweeds. J. Appl. Phycol. 23:919-923. 

  32. Siqueira, G., Bras, J. and Dufresne, A. 2010. Cellulosic bionanocomposites: A review of preparation, properties and applications. Polym. 2:728-765. 

  33. Sreenivasan, V.S., Somasundaram, S., Ravindran, D., Manikandan, V. and Narayanasamy, R. 2011. Microstructural, physicochemical and mechanical characterization of Sansevieria cylindrica fibres-An exploratory investigation. Mater. Des. 32:453-461. 

  34. Subramanian, K., Kumar, P.S., Jeyapal, P. and Venkatesh, N. 2005. Characterization of lingo-cellulosic seed fibre from Wrightia tinctoria plant for textile applications-An exploratory investigation. Eur. Polymer J. 41(4):853-861. 

  35. Thakur, V.K. and Thakur, M.K. 2014. Processing and characterization of natural cellulose fibers / thermoset polymer composites. Carbohydr. Polym. 109:102-117. 

  36. Vinson, K.D. and Franklin, T.J. 2010. Individualized seed hairs and products employing same. US 7691472 B2. 

  37. Wise, L.E., Murphy, M. and D'Addieco, A. 1946. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Paper Trade J. 122(2):35-43. 

  38. Yao, F., Wu, Q., Lei, Y., Guo, W. and Xu, Y. 2008. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stab. 93:90-98. 

  39. Yun, A.R., Lee, M.W., Kim, S.K. and Kim, J.S. 2014. Morphological characteristics of weed seed fibers. Weed Turf. Sci. 3(3):196-205. (In Korean) 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로