$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

식물근권에서 분리한 Pseudomonas fluorescens strain EP103에 의한 고추역병억제
Endophytic bacterium Pseudomonas fluorescens strain EP103 was effective against Phytophthora capsici causing blight in chili pepper 원문보기

농약과학회지 = The Korean journal of pesticide science, v.18 no.4, 2014년, pp.422 - 428  

김택수 (농촌진흥청 국립농업과학원 농업미생물과) ,  스와나리더타 (농촌진흥청 국립농업과학원 농업미생물과) ,  이세원 (농촌진흥청 국립농업과학원 농업미생물과) ,  박경석 (농촌진흥청 국립농업과학원 농업미생물과)

초록
AI-Helper 아이콘AI-Helper

딸기 근권에서 분리한 내생균 중 고추역병균 방제 및 고추생육촉진 효과가 우수한 균주를 선발하였다. Pseudomonas fluorescen EP103으로 명명된 내생균주는 다른 내생균주와 비교하여 식물의 뿌리 길이와 생체 중이 크게 증가하였다. 고추역병에 대한 온실검정에서 EP103처리는 방제가 78.7%을 나타냈으며 항균력 실험결과 고추역병균을 직접 억제하지는 않았다. EP103이 처리된 고추에서는 PR1, PR10등의 병저항성 유전자가 발현되었으며 EP103의 PCR분석 결과 피올테오린, 파이로니트린, 하이드로젠 싸이아나이드, 오르화미드 등의 유용유전자를 함유하고 있음이 밝혀졌다. 따라서 본 균주는 고추역병의 생물 방제용으로 활용할 가치가 있는 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

Endophytic bacterial strains from root tissue of strawberry were screened for their efficacy in growth improvement and control of Phytophthora blight disease of chili pepper plant under greenhouse condition. Plants treated with the strain EP103, identified as Pseudomonas fluorescens, showed growth i...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • fluorescens. The oligonucleotide primers developed from sequences available in NCBI for respective genes of P. fluorescens were used for this study. Lanes: (M) Ladder, (1) Pyoluteorin, (2) Pyrrolnitrin, (3) 2,4-diacetylphloroglucinol, (4) Hydrogen cyanide, (5) Orfamide A.

대상 데이터

  • The plates were incubated at 28°C for 7 days and inhibition zone was recorded in diameter (mm). Five replications were performed per treatment.
  • 5% agarose gels at 80 V for 60 min. The experiments were conducted twice with three replicates (plants).
  • The fungal pathogen Phytophthora capsici was obtained from the Korean Agriculture Cultural Collection (KACC), National Academy of Agricultural Sciences (NAAS), Suwon, South Korea. The P.
본문요약 정보가 도움이 되었나요?

참고문헌 (43)

  1. Azevedo, J. L., W. Maccheroni Jr., J. O. Pereira and W. L. de Araujo (2000) Endophytic microorganisms: A review on insect control and recent advances on tropical plants. Electron. J. Biotechnol. Vol. 3, No. 1. Online publication 

  2. Bhatia, S., R. C. Dubey and D. K. Maheshwari (2005) Enhancement of plant growth and suppression of collar rot of sunflower caused by Sclerotium rolfsii through fluorescent Pseudomonas. Ind. Phytopathol. 58:17-24. 

  3. Cameron, R. K., N. L. Paiva, C. J. Lamb and R. A. Dixon (1999) Accumulation of salicylic acid and PR-1 gene transcripts in relation to the systemic acquired resistance (SAR) response induced by Pseudomonas syringae pv. tomato in Arabidopsis. Physiol. Mol. Plant Pathol. 55:121-130. 

  4. Compant, D., B. Duffy, J. Nowak, C. Clement and E. A. Barka (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951-4959. 

  5. De Souza, J. T., D. M. Weller and J. M. Raaijmakers (2003) Frequency, diversity and activity of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species in Dutch take-all decline soils. Phytopathology 93:54-63. 

  6. Defago, G. and D. Haas (1990) Pseudomonas as antagonists of soil borne pant pathogens: Modes of action and genetic analysis. In: Soil Biochemistry, Vol. 6; Jeen-Marc Bollag and G. Stotzky (Ed); Marcel Dekker, New York, USA. pp 249-291. 

  7. Dowling, D. N. and F. O'Gara (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol. 12:133-141. 

  8. Dwivedi, D. and B. N. Johri (2003) Antifungals from fluorescent pseudomonads: Biosynthesis and regulation. Curr. Sci. 85:1693-1703. 

  9. Fu, Z. Q. and X. Dong (2013) Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64:839-863. 

  10. Germaine, K., E. Keogh, G. Garcia-Cabellos, B. Borremans, D. Van der Lelie, T. Barac, L. Oeyen, J. Vangronsveld, F. P. Moore, E. R. B. Moore, C. D. Campbell, D. Ryan and D. N. Dowling (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol. Ecol. 48:109-118. 

  11. Gross, H., V. O. Stockwell, M. D. Henkels, B. Nowak-Thompson, J. E. Loper and W. H. Gerwick (2007) The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem. Biol. 14:53-63. 

  12. Hallmann, J., R. Rodriguez-Kabana and J. W. Kloepper (1999) Chitin mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biol. Biochem. 31:551-560. 

  13. Hallmann, J., Q. A. Hallmann, W. F. Mahaffee and J. W. Kloepper (1997) Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43:895-914. 

  14. Howell, C. R. and R. D. Stipanovic (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480-482. 

  15. Hurek, T., L. L. Handley, B. Reinhold-Hurek and Y. Piche (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol. Plant-Microbe Interact. 15:233-242. 

  16. Iniguez, A. L., Y. Dong and E. W. Triplett (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol. Plant-Microbe Interact. 17:1078-1085. 

  17. Kishimoto, K., K. Matsui, R. Ozawa and J. Takabayashi (2005) Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol. 46:1093-1102. 

  18. Kraus, J. and J. E. Loper (1995) Characterization of a genomic locus required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol. 61:849-854. 

  19. Lanteigne, C., V. J. Gadker, T. Wallon, A. Novinscak and M. Filion (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Biol. Cont. 102:967-973. 

  20. Lee, S. C. and B. K. Hwang (2005) Induction of some defense-related genes and oxidative burst is required for the establishment of systemic acquired resistance in Capsicum annuum. Planta 221:790-800. 

  21. Michelsen, C. F. and P. Stougaard (2012) Hydrogen cyanide synthesis and antifungal activity of the biocontrol strain Pseudomonas fluoresscens In5 from Greenland is highly dependent on growth medium. Can. J. Microbiol. 58:383-390. 

  22. Nielson, T. H. and J. Sorensen (2003) Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl. Environ. Microbiol. 69:861-868. 

  23. Nowak, J. and V. Shulaev (2003) Priming for transplant stress resistance in in vitro propagation. In vitro Cell Dev. Biol. Plant. 39:107-124. 

  24. Park, C. J., K. J. Kim, R. Shin, J. M. Park, Y. C. Shin and K. H..Paek (2004) Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J. 37:186-198. 

  25. Persello-Cartieaux, F., L. Nussaume and C. Robaglia (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ. 26:189-199. 

  26. Pieterse C. M. J., S. C. M. Van Wees, J. A. Van Pelt, M. Knoester, R. Laan, H. Gerrits, P. J. Weisbeek and L. C. van Loon (1998) A novel signalling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-1580. 

  27. Pirttila, A. M., P. Joensuu, H. Pospiech, H. J. Jalonen and A. Hohtola (2004) Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol. Plantarum 121:305-312. 

  28. Ploetz, R., R. J. Schnell and J. Haynes (2002) Variable response of open-pollinated seedling progeny of avocado to Phytophthora root rot. Phytoparasitica 30:262-268. 

  29. Raaijmakers J. M., I. de Bruijn, O. Nybroe and M. Ongena (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev. 34:1037-1062. 

  30. Raaijmakers, J. M., I. De Bruijn and M. J. de Kock (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol. Plant Microbe Interact. 19:699-710. 

  31. Rosenblueth, M. and E. Martinez-Romero (2006) Bacteial endophytes and theri interactions with hosts. Mol. Plant-Microbe Interact. 19:827-837. 

  32. Rosenblueth, M. and E. Martinez-Romero (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch. Microbiol. 181:337-344. 

  33. Sambrook, J. E., E. F. Fritsch and T. Maniatis (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 

  34. Sang, M. K., J. G. Kim and K. D. Kim (2010) Biocontrol activity and induction of systemic resistance in pepper by compost water extracts against Phytophthora capsici. Phytopathology 100:774-783. 

  35. Seghers, D., L. Wittebolle, E. M. Top, W. Verstraete and S. D. Siciliano (2004) Impact of agricultural practices on the Zea mays L. Endophytic community. Appl. Environ. Microbiol. 70:1475-1482. 

  36. Sturz, A. and J. Kimpinski (2004) Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root lesion nematodes in the potato root zone. Plant Soil 262:241-249. 

  37. Sturz, A. V., B. R. Christie and J. Nowak (2000) Bacterial endophytes: Potential role in developing sustainable systems of crop production. Crit. Rev. Plant Sci. 19:1-30. 

  38. van Loon, L. C., P. A. H. M. Bakker and C. M. J. Pieterse (1998) Systemic resistance induced by rhizosphere bacteria. Ann. Rev. Phytopathol. 36:453-483. 

  39. Van Wees, S. C., S. Vander Ent and C. M. J. Pieterse, (2008) Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11:443-438. 

  40. Wang, Y. Q., Y. Ohara, H. Nakayashiki, Y. Tosha and S. Mayama (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant-Microbe Interact. 18:385-396. 

  41. Xie, Y. R., Z. Y. Chen, R. L. Brown and D. Bhatnagar (2010) Expression and functional characterization of two pathogenesis-related protein10 genes from Zea mays. J. Plant Physiol.167:121-130. 

  42. Yang, J. W., S. H. Yu and C. M. Ryu (2009) Priming of defense-related genes confers root-colonizing Bacillus-elicited induced systemic resistance in pepper. Plant Pathol. J. 25: 389-399. 

  43. Zinniel, D. K., P. Lambrecht, N. B. Harris, Z. Feng, D. Kuczmarski, P. Higley, C. A. Ishmaru, A. Arunakumari, R. G. Barletta and A. K. Vidaver (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Environ. Microbiol. 68:2198-2208. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로