$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 옥타브밴드 순서 통계량에 기반한 음악 장르 분류
A Musical Genre Classification Method Based on the Octave-Band Order Statistics 원문보기

한국음향학회지= The journal of the acoustical society of Korea, v.33 no.1, 2014년, pp.81 - 86  

서진수 (Department of Electronic Engineering, Gangneung-Wonju National University)

초록
AI-Helper 아이콘AI-Helper

본 논문은 음악신호의 옥타브 밴드 상에서 주파수와 시간 방향의 순서 통계량에 기반한 음악분류기에 대한 연구이다. 음악의 화음 및 강약 구조를 표현하기 위해서 파워스펙트럼의 옥타브 밴드 순서 통계량을 이용하였다. 널리 사용되고 있는 두 음악 데이터셋을 이용한 성능 실험을 통해서, 옥타브 밴드 순서 통계량이 기존의 MFCC 와 옥타브밴드 스펙트럼 고저차 특징에 비해서 두 데이터셋에대해 각각 2.61 %와 8.9 % 장르 분류정확도가 개선되었다. 실험결과는 옥타브 밴드 순서 통계량이 음악 장르 분류에 적합함을 보인다.

Abstract AI-Helper 아이콘AI-Helper

This paper presents a study on the effectiveness of using the spectral and the temporal octave-band order statistics for musical genre classification. In order to represent the relative disposition of the harmonic and non-harmonic components, we utilize the octave-band order statistics of power spec...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The OSC was first proposed solely for musical genre classification and describes the difference between the maximum and the minimum of the power spectrum at the octave-scale subbands. As an extension to OSC, this paper investigates different types of the spectral distributional characteristics of the octave-scale subbands. In particular, we propose a musical genre classification method based on the octaveband order statistics, such as the median, quartile, minimum, maximum, and so on.
  • The short-time spectral features in the proposed method are based on the distributional characteristics of the octavescale subbands. According to the results in the paper,[6] the octave-scale subbands contain enough information for distinguishing the genres of a music signal.
  • The mean and the standard deviation of the frame-level features in a segment are widely-used as a segment-level feature for most of the previous works. In this paper, we also extend the previous temporal integration methods, the mean and the standard deviation, into the order statistics. We apply the same types of the summary order statistics in Table 1 to temporal integration of framelevel features.
  • The extracted short-time features were temporally integrated over six seconds. Then the linear SVM classifier was trained and tested in classifying a segment-level feature. The genre of each music clip was determined by the majority voting on the classification results of the segments in the clip.
  • The classification results of the ISMIR2004 and GTZAN datasets are given in Table 2 and 3 respectively. The set of octave-band order statistics, SOS1, SOS2, SOS3, SOS4, and SOS5, in Table 1 was used in combination with the temporal integration methods, TOS1, TOS2, TOS3, TOS4, and TOS5. For a comparison with the previous spectral descriptors, the 12-order MFCC and the OSC were included in the test.
  • We note that it is reported in[2,9] if they use the SVM with RBF kernel, the classification accuracy can be improved further about 5 %. Since an extensive benchmark testing is not the aim of this paper, we focus on showing the validity of using the octave-band order statistics on the musical genre classification task. By using the SOS5 and TOS5, the classification accuracy of the proposed method exceeded 84 % on both datasets in Tables 2 and 3, which is among the best results reported so far with the linear SVM classifier, although the proposed method is less complicated than the other approaches compared with.

대상 데이터

  • The second music dataset (abbreviated as GTZAN) is the one that was used by George Tzanetakis in his work.[1] It consists of 1000 songs over ten different genres: blues, classical, country, disco, hiphop, jazz, metal, pop, reggae, and rock. For the ISMIR2004 dataset, one half of the songs was used for training, and the other half was used for testing.
  • [1] It consists of 1000 songs over ten different genres: blues, classical, country, disco, hiphop, jazz, metal, pop, reggae, and rock. For the ISMIR2004 dataset, one half of the songs was used for training, and the other half was used for testing. For the GTZAN dataset, the 10 fold cross-validation was used to get the classification accuracy.

이론/모형

  • Any kind of state-of-the-art statistical classifiers, such as nearest neighbor, Gaussian mixture model, and support vector machine (SVM), can be used in training the genre model over the segment-level feature. In this paper, the linear SVM classifier, known for its simplicity and reasonably high classification accuracy, is used. As a final step, the classification results from all segments in a music clip are aggregated typically by the majority voting rule.
  • For a comparison with the previous spectral descriptors, the 12-order MFCC and the OSC were included in the test. To compare temporal integration methods, the temporal mean and standard deviation (abbreviated as TMS) was included in the test. The results of them are also listed in Tables 2 and 3.
본문요약 정보가 도움이 되었나요?

참고문헌 (9)

  1. G. Tzanetakis and P. Cook, "Musical genre classification of audio signals," IEEE Trans. Speech and Audio Process. 10, 293-302 (2002). 

  2. Y. Panagakis, C. Kotropoulos, and G. Arce, "Non-negative multilinear principal component analysis of auditory temporal modulations for music genre classification," IEEE Trans. Audio Speech Lang. Process. 18, 576-588 (2010). 

  3. S.-C. Lim, S.-J. Jang, S.-P. Lee, and M. Y. Kim, "Music genre classification system using decorrelated filter bank," (in Korean) J. Acoust. Soc. Kr. 30, 100-106 (2011). 

  4. A. Meng, P. Ahrendt, J. Larsen, and L. Hansen, "Temporal feature integration for music genre classification," IEEE Trans. Audio Speech Lang. Process. 15, 1654 - 1664 (2007). 

  5. E. Pampalk, A. Flexer, and G. Widmer, "Improvements of audio-based music similarity and genre classification," in Proc. ISMIR-2005, 634-637 (2005). 

  6. D. Jiang, L. Lu, H. Zhang, J. Tao, and L. Cai, "Music type classification by spectral contrast feature," in Proc. ICME-2002, 113-116 (2002). 

  7. P. Loizou and O. Poroy, "Minimum spectral contrast needed for vowel identification by normal-hearing and cochlear implant listeners," J. Acoust. Soc. Am. 110, 1619-1627 (2001). 

  8. J. Seo and S. Lee, "Higher-order moments for musical genre classification," Signal Processing 91, 2154-2157 (2011). 

  9. S.-C. Lim, J.-S. Lee, S.-J. Jang, S.-P. Lee, and M. Kim, "Music-genre classification system based on spectro-temporal features and feature selection," IEEE Trans. Consum. Electron. 58, 1262-1268 (2012). 

저자의 다른 논문 :

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로