$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 우면산 산사태 발생 지점의 지형분석
Topographic Analysis of Landslides in Umyeonsan 원문보기

한국측량학회지 = Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, v.32 no.1, 2014년, pp.55 - 62  

고석민 (Dept. of Civil Engineering, Gangneung-Wonju National University) ,  이승우 (Dept. of Civil Engineering, Gangneung-Wonju National University) ,  윤찬영 (Dept. of Civil Engineering, Gangneung-Wonju National University) ,  김기홍 (Dept. of Civil Engineering, Gangneung-Wonju National University)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 2011년 우면산 산사태 지역에 대한 현장조사를 수행하여 발생지점에 대한 자료를 구축하였으며, 산사태 발생 전후의 항공사진과 항공LiDAR DEM을 이용하여 여러 가지 지형인자들에 대한 단위면적당 발생빈도를 분석하였다. 경사도는 Neighborhood 알고리즘과 Maximum Slope 알고리즘을 적용하여 비교하였으며, 경사방향, 고도뿐만 아니라 최대경사방향의 곡률과 그 수직인 면에 대한 곡률을 분석에 이용하였다. 그 결과 최대경사방향 경사도 $40^{\circ}-45^{\circ}$ 구간이 상대적으로 매우 위험한 것으로 나타났으며 최대경사방향에 수직으로 오목한 사면이 더 위험한 것으로 분석되었다.

Abstract AI-Helper 아이콘AI-Helper

In this study, we investigated the landslides area which occurred in Umyeonsan in 2011 and collected landslide location data. Using this field data with aerial photos and LiDAR data which is obtained before and after disaster event, we analyzed the landslide occurrence frequency per unit area about ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • 3과 같다. GPS를 이용한 발생지점의 좌표, 발생부의 길이, 폭, 사진 등의 정보를 현장조사야장에 기록하였다. 유하부 및 퇴적부 또한 측정이 가능한 범위 내에서 약 10~50m의 거리 간격으로 경사도, 진행방향, 폭 등을 조사하였다.
  • 차이가 있는 부분은 35°이상의 급경사가 Neighborhood 알고리즘보다 많이 추출되는 것으로 이는 평균화된 개념이 아닌 최대경사를 계산하는 알고리즘의 특성차이 때문이다. 각 경사도 등급에서 산사태에 대한 위험도를 알아보기 위해 두가지 방법에 대해 단위 면적당 산사태 발생빈도를 비교하였다. Fig.
  • 각 고도별 산사태 발생지점의 분포를 파악하기 위해 평균고도 91m, 최고고도 291m의 우면산 DEM에서 50m 간격의 6단계로 등급을 구분하여 분석하였다. Fig.
  • 지형 분석에 이용된 인자들은 발생부의 경사도, 경사방향, 표고, 표면 곡률이다. 각각의 인자들에 대해 발생빈도 및 단위 면적당 발생빈도 분석을 실시하였다.
  • 발생전후의 항공 LiDAR DEM과 항공사진 판독을 기초자료로 하여 유역을 구분한 후 각 유역 별로 현장조사를 수행하였다. 관측을 위한 도구로 레이저 거리 측정기, 클리노미터, 핸드핼드 GPS 등을 이용하였고, 현장 조사야장은 Fig. 3과 같다. GPS를 이용한 발생지점의 좌표, 발생부의 길이, 폭, 사진 등의 정보를 현장조사야장에 기록하였다.
  • 산사태 발생지점에 대한 항공LiDAR DEM의 지형분석을 수행하였으며 지형분석인자로는 경사도, 경사향, 고도, 표면 곡률을 이용하였다. 기존에 주로 이루어졌던 단순한 발생빈도 분석이 아닌 단위면적당 발생빈도 분석을 수행하였으며 다음과 같은 결과를 도출하였다.
  • 단위 면적당 발생빈도를 분석하기 위해 우면산 전체에 대해 경사도 등급당 면적을 추출하였다. Neighborhood 알고리즘으로 계산된 경사도의 면적분포는 <5°(18.
  • GPS를 이용한 위치 관측이 가장 효율적인 방법이나, 수목이 우거진 산악 지역에서 핸드핼드 GPS를 사용하는 경우 개활지에서의 일반적인 오차인 3-5m 정도가 아니라 경우에 따라 수십m까지 오차가 발생할 수도 있다. 따라서 발생 전인 2009년 LiDAR DEM과 항공사진, 그리고 발생 후인 2011년 LiDAR DEM과 항공사진을 이용하여 정확한 데이터에 대한 선별작업과 위치 좌표 수정작업을 수행하였다. 산사태 발생지점이 항공사진 상에서 정확히 확인되고 그 위치가 일치하는 경우 문제가 없으나 산지 깊숙한 곳의 소규모 산사태 발생부는 수목에 가려 일부 경우를 제외하고는 확인이 어려웠다.
  • 2와 같은 대규모의 산사태 흔적이 곳곳에 산재해 있다. 발생전후의 항공 LiDAR DEM과 항공사진 판독을 기초자료로 하여 유역을 구분한 후 각 유역 별로 현장조사를 수행하였다. 관측을 위한 도구로 레이저 거리 측정기, 클리노미터, 핸드핼드 GPS 등을 이용하였고, 현장 조사야장은 Fig.
  • 본 연구에서는 2011년에 발생한 우면산 산사태 지역을 현장조사하여 30여개 유역에 걸쳐 여러 산사태 발생지점을 관측하였다. 현장조사 자료에서 산사태 발생 전후의 항공사진과 항공LiDAR DEM을 이용하여 보다 정확한 발생지점을 선별하고 수정하여 총 117 개소로 정리하였다.
  • 기존의 산사태 발생지 사례 연구에서 지형적인 요소들에 대한 많은 조사 연구들이 이루어졌으나 단순히 빈도에 관한 내용이 대부분이며 경사도, 경사향, 고도에 대한 내용만이 다루어져 왔다. 본 연구에서는 실제 현장조사로 구한 산사태 발생지점에 대해 수치지도 DEM이 아닌 항공 LiDAR으로부터 구한 DEM을 이용하여 대표적인 지형인자뿐만 아니라 표면 곡률에 대한 분석을 수행하였으며, 단순 빈도분석이 아닌 해당 산지 전체에 대해 해당 지형인자 등급의 단위면적당 발생빈도 분석을 수행하였다.
  • 계산된 곡률값은 매우 작기 때문에, 경우에 따라 100을 곱한 것으로 해석될 수 있으며, 분석 기법의 다양화나 신뢰성을 찾기 위해 어느 정도의 값을 오목, 볼록으로 판단하는 지는 상황에 따라 다를 수 있다. 본 연구에서는 지형분석을 수행하는데 있어서 표면에 대한 전체적인 곡률값 대신 세분화된 두 개의 곡률값을 적용하였다. Fig.
  • 현장조사 자료에서 산사태 발생 전후의 항공사진과 항공LiDAR DEM을 이용하여 보다 정확한 발생지점을 선별하고 수정하여 총 117 개소로 정리하였다. 산사태 발생지점에 대한 항공LiDAR DEM의 지형분석을 수행하였으며 지형분석인자로는 경사도, 경사향, 고도, 표면 곡률을 이용하였다. 기존에 주로 이루어졌던 단순한 발생빈도 분석이 아닌 단위면적당 발생빈도 분석을 수행하였으며 다음과 같은 결과를 도출하였다.
  • 우면산 산사태 발생 지점의 지형적인 특성을 파악하기 위해 GIS 툴을 이용하여 해당 지역 DEM 전체에 걸쳐 각 지형인자별 면적을 추출하였고 각각의 발생지점에 대한 지형인자도 추출하였다. 지형 분석에 이용된 인자들은 발생부의 경사도, 경사방향, 표고, 표면 곡률이다.
  • GPS를 이용한 발생지점의 좌표, 발생부의 길이, 폭, 사진 등의 정보를 현장조사야장에 기록하였다. 유하부 및 퇴적부 또한 측정이 가능한 범위 내에서 약 10~50m의 거리 간격으로 경사도, 진행방향, 폭 등을 조사하였다.
  • (2012)는 산사태 및 토석류가 발생한 지역에서 현장조사를 수행하고, 수치지형도, 토양도, 임상도, 기상자료 등을 이용하여 산사태 발생과 미발생지역에 대한 데이터베이스를 구축하였다. 이렇게 구축된 DB를 이용하여 여러 인자 중에서 산사태 발생과 통계학적으로 상관성이 높은 인자를 선정하고 이를 회귀분석에 이용하여 산사태 발생 모델을 개발하였다. 그러나 아직까지 신뢰성을 확보하고 제도적으로 활용되기에는 부족한 실정이다.
  • 산사태의 지형적인 특성을 분석하는데 있어서 실제 산사태 발생 지점의 정확한 위치데이터 취득은 매우 중요하다. 이를 위하여 현장조사 야장에서 GPS로 취득된 산사태 발생지점의 좌표정보를 수집하여 ArcGIS에서 포인트 데이터 형식의 Shp 파일로 제작하였다. GPS를 이용한 위치 관측이 가장 효율적인 방법이나, 수목이 우거진 산악 지역에서 핸드핼드 GPS를 사용하는 경우 개활지에서의 일반적인 오차인 3-5m 정도가 아니라 경우에 따라 수십m까지 오차가 발생할 수도 있다.
  • 산사태 발생지점이 항공사진 상에서 정확히 확인되고 그 위치가 일치하는 경우 문제가 없으나 산지 깊숙한 곳의 소규모 산사태 발생부는 수목에 가려 일부 경우를 제외하고는 확인이 어려웠다. 이를 추가적으로 보완하기 위해 피해 전후의 항공 LiDAR DEM을 이용해 차분 DEM을 제작하였다. 발생전후의 DEM 표고값을 서로 빼게 되면 특정 침식 지역이나 퇴적지역이 나타나게 되고 이를 산사태 발생지점의 위치 확인에 이용할 수 있다.
  • 본 연구에서는 2011년에 발생한 우면산 산사태 지역을 현장조사하여 30여개 유역에 걸쳐 여러 산사태 발생지점을 관측하였다. 현장조사 자료에서 산사태 발생 전후의 항공사진과 항공LiDAR DEM을 이용하여 보다 정확한 발생지점을 선별하고 수정하여 총 117 개소로 정리하였다. 산사태 발생지점에 대한 항공LiDAR DEM의 지형분석을 수행하였으며 지형분석인자로는 경사도, 경사향, 고도, 표면 곡률을 이용하였다.

대상 데이터

  • 본 연구에서는 산사태 발생 지점에 대하여 지형적인 인자들을 집중적으로 분석하기 위하여 서울시 서초구 우면산에서 발생한 산사태 지점(Fig. 1)을 대상으로 2011년부터 2012년까지 대표적인 30개 유역에 대해 지속적인 현장조사를 수행하였다.
  • 발생전후의 DEM 표고값을 서로 빼게 되면 특정 침식 지역이나 퇴적지역이 나타나게 되고 이를 산사태 발생지점의 위치 확인에 이용할 수 있다. 이러한 과정을 거쳐 정확한 산사태 발생지점이라고 판단되는 총 117개의 위치데이터를 선별하였고 연구에 적용하였다.

데이터처리

  • 본 연구에서는 산사태 발생지점과 경사도의 관계를 분석하기 위하여 Neighborhood 알고리즘과 Maximum Slope 알고리즘을 적용하여 비교분석하였다. Neighborhood 알고리즘을 이용한 경사도는 ArcGIS의 툴을 이용하여 추출하였으며, Maximum Slope 알고리즘은 S/W툴이 없어서 C언어를 이용한 프로그램을 제작하여 계산하였다. 발생부 117개소를 대상으로 Neighborhood 알고리즘의 단순 빈도분석을 실시한 결과, 산사태 발생 지점의 평균 경사는 27.

이론/모형

  • ArcGIS 공간분석 툴에서 제공하는 지형 표면의 곡률은 Zevenbergen and Thorne(1987)이 제안한 방법을 이용하며, Fig. 12와 같이 해당 셀의 주변 8개의 고도값에 대한 1차 및 2차 편미분을 기반으로 계산된다. 계산된 곡률값은 매우 작기 때문에, 경우에 따라 100을 곱한 것으로 해석될 수 있으며, 분석 기법의 다양화나 신뢰성을 찾기 위해 어느 정도의 값을 오목, 볼록으로 판단하는 지는 상황에 따라 다를 수 있다.
  • 동일한 분석을 Maximum Slope 알고리즘으로 구한 경사도에도 적용하였다. 우면산 지역의 평균 경사는 26.
  • 본 연구에서는 산사태 발생지점과 경사도의 관계를 분석하기 위하여 Neighborhood 알고리즘과 Maximum Slope 알고리즘을 적용하여 비교분석하였다. Neighborhood 알고리즘을 이용한 경사도는 ArcGIS의 툴을 이용하여 추출하였으며, Maximum Slope 알고리즘은 S/W툴이 없어서 C언어를 이용한 프로그램을 제작하여 계산하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
Quadratic Surface의 기본적인 개념은 무엇인가? , 2005). Quadratic Surface의 기본적인 개념은 Neighborhood 알고리즘과 같으나 대각선 방향의 셀은 고려하지 않고 인접한 동서남북 4개의 셀만을 계산하는 방법이다. Maximum Slope은 식 (2)와 같이 중심 셀을 기준으로 8방향 의 인접 셀과의 경사도를 계산하고 그 중 최대 경사만을 대표 경사값으로 추출한다.
경사향은 어떻게 추출할 수 있는가? 경사향은 래스터 DEM 각 셀의 경사 방향을 계산하여 추출하며, 총 8방향으로 표현된다. 산사태 발생지점의 경사향 빈도는 Fig.
planform curvature이 양수 값과 음수 값을 갖는 경우는? 15와 같다. 산지에서 능선 및 요선을 의 미하는 지성선과 연관이 높으며, 최대 경사방향에 수직인 방향으로 볼록인 경우 양수 값을 가지고, 반대로 오목인 경우 음수 값을 가지게 된다. 산사태 발생지점에서 최대경사방향에 수직인 면에 대한 곡률값은 –6.
질의응답 정보가 도움이 되었나요?

참고문헌 (14)

  1. An, S.H., Kang, Y.S., and Shin, Y.C. (2005), Developing of slope calculation algorithm using cell-based modeling, Journal of the Korean Association of Geographic Information Studies, Vol. 8, No. 3, pp. 121-128. (in Korean with English abstract) 

  2. Cho, Y.C. and Jang, T.W. (2006), The geometric characteristics of landslides and joint characteristics in gangneung area, The Journal of Engineering Geology, Vol. 16, No. 4, pp. 437-453. (in Korean with English abstract) 

  3. http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/How_Curvature_works/00q90000000t000000/ (last date accessed: 10 January 2014) 

  4. Jun, K.W., Oh, C.Y., and Jun, B.H. (2011), Study on analyzing characteristics which causes a debris flow-focusing on the relation with slope and river-, Journal of Safety and Crisis Management, Vol. 7, No. 3, pp. 223-232. (in Korean with English abstract) 

  5. Kim, K.N. (2011), A Basic Study on The Development of The Guidelines on Setting Debris Flow Hazards, Research Institute for Gangwon, Korea, pp. 170. (in Korean) 

  6. Kim, K.S., Song, Y.S., Cho, Y.C., Kim, W.Y., and Jeong, G.C. (2006), Characteristics of rainfall and landslides according to the geological condition, Journal of Engineering Geology, Vol. 16, No. 2, pp. 201-214. (in Korean with English abstract) 

  7. Kim, K.S., Song, Y.S., Chae, B.G., Cho, Y.C., and Lee, C.O. (2007), Geometric Characteristics of Landslides on Natural Terrain according to the Geological Condition, Journal of Engineering Geology, Vol. 17, No. 1, pp. 75-87. (in Korean with English abstract) 

  8. Lee, J.H. (2005), Management system for landslides hazard area using GIS, Journal of Korea Society Forest Engineering and Technology, Vol. 3, No. 3, pp. 245-255. (in Korean with English abstract) 

  9. Lee, M.S., Cho, G.B., Yoon, J.G., and Kim, H.W. (2012), A case analysis on repair method of landslides at mt. Woomyun, Proceedings of Korean Geo-Enlvironmental Society, Vol. 9, pp. 233-436. (in Korean with English abstract) 

  10. Lee, S.W., Kim, G., Yune, C.Y., Ryu, H.J., and Hong, S.J. (2012), Development of landslide-risk prediction model thorough database construction, Journal of the Korean Geotechnical Society, Vol. 28, No. 4, pp. 23-39. (in Korean with English abstract) 

  11. Moore, I.D., Gayson, R.B., and Ladson, A.R. (1991), Digital terrain modelling: a review of hydrological, geomorphological, and biological applications, Hydrological Processes, Vol. 57, No. 2, pp. 443-452. 

  12. Schmidt, J., Evans, I.S., and Brinkmann, J. (2003), Comparison of polynomial models for land surface curvature calculation, International Journal of Geographical Information Science, Vol. 5, No. 1, pp. 3-30. 

  13. Wilson, J.P. and Gallant, J.C. (2000), Terrain Analysis, John Wiley & Sons Inc. 

  14. Zevenbergen, L.W. and Thorne, C.R., (1987), Quantitative analysis of land surface topography, Earth Surface Processes and Landforms, Vol. 12, pp. 47-56. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로