$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

식물의 앱시스산 신호 전달 기작: 앱시스산 수송, 인식, 신호 전달 및 번역 후 변형 과정에 관하여
ABA Signal Transduction Pathway in Plants: ABA Transport, Perception, Signaling and Post-Translational Modification 원문보기

생명과학회지 = Journal of life science, v.24 no.2 = no.166, 2014년, pp.196 - 208  

이재훈 (부산대학교 사범대학 생물교육과)

초록
AI-Helper 아이콘AI-Helper

식물의 생활사 동안 물부족 스트레스는 식물의 생장과 발달에 해로운 영향을 끼치는 대표적인 스트레스이다. 유용 작물의 생산성을 증가시키기 위하여, 물부족 스트레스를 극복하는 일은 식물학 연구 분야에서 가장 중요한 이슈로 대두되어 왔다. 식물의 호르몬 중에서 앱시스산은 물부족 스트레스에 대해 식물이 저항성을 나타내는데 가장 중요한 호르몬으로서 역할을 수행하며, 씨앗의 발아, 기공의 개폐, 유묘의 성장과 같은 다양한 발달 과정에도 관여하고 있다. 그러므로, 앱시스산에 의해 매개되는 식물의 신호전달 기작을 명확히 이해하는 것은 물부족 스트레스에 대한 내성을 갖는 유용 식물을 생산해내기 위해 가장 효과적인 방법이 될 것이다. 한편, 인산화, 유비퀴틴화와 같은 번역 후 변형 과정은 식물이 다양한 환경적 스트레스 하에서 신속하게 적응을 하기 위해 가장 효율적인 기작으로 인식되어 왔는데, 이는 전사수준에서의 조절과 달리 이미 존재하는 신호전달 물질의 활성과 안정성을 직접적으로 빠르게 조절할 수 있기 때문이다. 본 총설에서는 앱시스산의 신호전달 과정과 관련된 최근 연구 동향을 업데이트하고자 하며, 특히 이러한 신호전달 과정을 앱시스산 수송, 인식, 신호전달 및 번역 후 변형 과정에 초점을 맞추어 알아보고자 한다. 또한 그러한 조절 기작이 농업분야에서 유용 작물을 생산하는데 어떻게 적용될 수 있는지에 대한 향후 전망에 대해서도 기술하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

During the life cycle of plants, water deficit leads to an adverse effect on its growth and development. To increase the productivity of crops, overcoming such drought stress is one of the most important issues in the field of plant study. Among plant hormones, the phytohormone, abscisic acid (ABA) ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 총설에서는 최근까지 업데이트된 식물의 앱시스산에 의한 세포 내 반응 기작을 앱시스산의 수송, 인지, 신호전달 측면에서 접근하여 탐색하고자 한다. 또한, 해당 신호 전달에 관여하는 신호전달 단백질의 조절 기작을, 그들의 활성 및 안정화에 영향을 미치는 번역 후 변형과정에 초점을 맞추어 알아보고자 한다. 이는 앱시스산에 대한 보다 상세한 이해를 통해 물부족 스트레스에 의한 피해를 최소화할 수 있는 방안 제시에 도움이 될 것이라 사료된다.
  • 이에 최근 들어 앱시스산에 의해 매개되는 세포 내 반응에서, 단백질의 번역 후 변형과정(post-translational modification)을 통해 이루어지는 부분을 이해하고자 하는 연구 접근이 급격히 증가하고 있는 실정이다. 본 총설에서는 최근까지 업데이트된 식물의 앱시스산에 의한 세포 내 반응 기작을 앱시스산의 수송, 인지, 신호전달 측면에서 접근하여 탐색하고자 한다. 또한, 해당 신호 전달에 관여하는 신호전달 단백질의 조절 기작을, 그들의 활성 및 안정화에 영향을 미치는 번역 후 변형과정에 초점을 맞추어 알아보고자 한다.
  • 본 총설을 통해 최근까지 업데이트된 앱시스산 신호 전달 기작을 상세히 이해하고자 하였다. 상기 기작의 상세한 이해를 기반으로 하여, 이를 가뭄 저항성과 관련된 작물 유전자의 선별 및 해당 유전자 발현량 조절을 통한 형질전환체의 제작 (혹은 모델 식물 유전자 선별 후 작물로의 적용을 통한 형질전환체의 제작)에 적용할 수 있다면, 재배 지역의 확장 및 유용한 약용, 식량, 에너지 작물의 생산량 개선에 크게 도움이 될 것이다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
앱시스산은 가뭄저항성 외에도 식물에 어떠한 영향을 미치는가? 식물 호르몬 중 앱시스산 (abscisic acid)은 식물의 가뭄 스트레스에 대한 저항성을 확립하기 위하여 주된 역할을 하는 호르몬으로서, 그 산업적 연구 가치를 높이 평가 받아 온 호르몬이다. 앱시스산은 가뭄저항성 외에도 식물의 대사과정중 씨앗의 발아(seed germination), 휴면(seed dormancy), 기공의 개폐(stomata closure), 유묘의 생장(seedling growth), 물부족 스트레스(drought stress) 과정에 있어 중요한 조절 역할을 담당한다[13, 24].
앱시스산의 신호 전달 기작의 연구의 부족한 점은 무엇인가? 2009년 이후 PYR/PYL/RCAR (Pyrabactin Resistant/PYR-Like/Regulatory Component of ABA Receptors) 수용성 수용체 그룹의 분리로부터 기존에 알려져 있던 PP2C (Protein Phosphatase 2C), SnRK2s (SNF1-RELATED PROTEIN KINASE 2s), bZIP 타입의 전사조절인자로 이어지는 앱시스산 경로의 상위를 비로소 연결시킬 수 있게 되었으며, 이는 해당 호르몬 신호 전달 과정의 많은 부분을 설명할 수 있도록 공헌하였다[19, 23, 26, 80]. 이러한 진전에도 불구하고, 앱시스산 반응 유전자 발현을 조절하는 다수의 전사 조절 인자(AREB/ABF/ABI5, AtMYC2, ABI3, ABI4 등)의 활성 조절에 관한 연구 및 그 하위단계 유전자들의 역할 및 기능에 대한 구체적 연구는 상당부분 미흡한 상태로 남아있는데, 이는 앱시스산 신호 경로와 관련되어 아직도 많은 풀어야 할 숙제가 남아있음을 의미한다.
앱시스산 (abscisic acid)이란 무엇인가? 그러므로, 환경 스트레스(abiotic stress)에 대한 식물의 대응 기작을 연구하는 식물학자들에게 있어서, 이러한 가뭄 스트레스 저항성 기작을 상세히 규명하는 것은 최근 들어 가장 주목을 끌고 있는 연구 주제 중 하나이다. 식물 호르몬 중 앱시스산 (abscisic acid)은 식물의 가뭄 스트레스에 대한 저항성을 확립하기 위하여 주된 역할을 하는 호르몬으로서, 그 산업적 연구 가치를 높이 평가 받아 온 호르몬이다. 앱시스산은 가뭄저항성 외에도 식물의 대사과정중 씨앗의 발아(seed germination), 휴면(seed dormancy), 기공의 개폐(stomata closure), 유묘의 생장(seedling growth), 물부족 스트레스(drought stress) 과정에 있어 중요한 조절 역할을 담당한다[13, 24].
질의응답 정보가 도움이 되었나요?

참고문헌 (93)

  1. Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63-78. 

  2. Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., Hosokawa, D. and Shinozaki, K. 1997. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic-acidregulated gene expression. Plant Cell 9, 1859-1868. 

  3. Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Rodrigues, A., Pizzio, G. A. and Rodriguez, P. L. 2012. Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors. Plant Physiol 158, 970-980. 

  4. Bossi, F., Cordoba, E., Dupre, P., Mendoza, M. S., Roman, C. S. and Leon, P. 2009. The Arabidopsis ABA-INSENSITIVE (ABI) 4 factor acts as a central transcription activator of the expression of its own gene, and for the induction of ABI5 and SBE2.2 genes during sugar signaling. Plant J 59, 359-374. 

  5. Boyer, J. S. 1982. Plant productivity and environment. Science 218, 443-448. 

  6. Chen, H., Lai, Z., Shi, J., Xiao, Y., Chen, Z. and Xu, X. 2010. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol 10, 281. 

  7. Chen, Y. H., Hu, L., Punta, M., Bruni, R., Hillerich, B., Kloss, B., Rost, B., Love, J., Siegelbaum, S. A. and Hendrickson, W. A. 2010. Homologue structure of the SLAC1 anion channel for closing stomata in leaves. Nature 467, 1074-1080. 

  8. Chen, Y. T., Liu, H, Stone, S. and Callis, J. 2013. ABA and the ubiquitin E3 ligase KEEP ON GOING affect proteolysis of the Arabidopsis thaliana transcription factors ABF1 and ABF3. Plant J 75, 965-976. 

  9. Choi, H., Hong, J., Ha, J., Kang, J. and Kim, S. Y. 2000. ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275, 1723-1730. 

  10. Choi, H. I., Park, H. J., Park, J. H., Kim, S., Im, M. Y., Seo, H. H., Kim, Y. W., Hwang, I. and Kim, S. Y. 2005. Arabidopsis calcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiol 139, 1750-1761 

  11. Dai, M., Xue, Q., Mccray, T., Margavage, K., Chen, F., Lee, J. H., Nezames, C. D., Guo, L., Terzaghi, W., Wan, J., Deng, X. W. and Wang, H. 2013. The PP6 phosphatase regulates ABI5 phosphorylation and abscisic acid signaling in Arabidopsis. Plant Cell 25, 517-534. 

  12. Finkelstein, R., Gampala, S. S., Lynch, T. J., Thomas, T. L. and Rock, C. D. 2005. Redundant and distinct functions of the ABA response loci ABA-INSENSITIVE (ABI) 5 and ABRE-BINDING FACTOR (ABF) 3. Plant Mol Biol 59, 253-267. 

  13. Finkelstein, R. R., Gampala, S. S. and Rock, C. D. 2002. Abscisic acid signaling in seeds and seedlings. Plant Cell 14, S15-S45. 

  14. Finkelstein, R. R. and Lynch, T. J. 2000. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12, 599-609. 

  15. Finkelstein, R. R., Wang, M. L., Lynch, T. J., Rao, S. and Goodman, H. M. 1998. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10, 1043-1054. 

  16. Fujii, H., Verslues, P. E. and Zhu, J. K. 2007. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19, 485-494. 

  17. Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M. M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2005. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17, 3470-3488. 

  18. Fujita, Y., Nakashima, K., Yoshida, T., Katagiri, T., Kidokoro, S., Kanamori, N., Umezawa, T., Fujita, M., Maruyama, K., Ishiyama, K., Kobayashi, M., Nakasone, S., Yamada, K., Ito, T., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2009. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol 50, 2123-2132. 

  19. Fujita, Y., Yoshida, T. and Yamaguchi-Shinozaki, K. 2013. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant 147, 15-27. 

  20. Garcia, M. E., Lynch, T., Peeters, J., Snowden, C. and Finkelstein, R. 2008. A small plant-specific protein family of ABI five binding proteins (AFPs) regulates stress response in germinating Arabidopsis seeds and seedlings. Plant Mol Biol 67, 643-658. 

  21. Gomez-Porras, J. L., Riano-Pachon, D. M., Dreyer, I., Mayer, J. E. and Mueller-Roeber, B. 2007. Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC Genomics 8, 260. 

  22. Gonzalez-Guzman, M., Pizzio, G. A., Antoni, R., Vera-Sirera, F., Merilo, E., Bassel, G. W., Fernandez, M. A., Holdsworth, M. J., Perez-Amador, M. A., Kollist, H. and Rodriguez, P. L. 2012. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell 24, 2483-2496. 

  23. Guo, J., Yang, X., Weston, D. J. and Chen, J. G. 2011. Abscisic acid receptors: past, present and future. J Integr Plant Biol 53, 469-479. 

  24. Himmelbach, A., Yang, Y. and Grill, E. 2003. Relay and control of abscisic acid signaling. Curr Opin Plant Biol 6, 470-479. 

  25. Hobo, T., Asada, M., Kowyama, Y. and Hattori, T. 1999. ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J 19, 679-689. 

  26. Hubbard, K. E., Nishimura, N., Hitomi, K., Getzoff, E. D. and Schroeder, J. I. 2010. Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24, 1695-1708. 

  27. Kang, J., Hwang, J. U., Lee, M., Kim, Y. Y., Assmann, S. M., Martinoia, E. and Lee, Y. 2010. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci USA 107, 2355-2360. 

  28. Kang, J. Y., Choi, H. I., Im, M. Y. and Kim, S. Y. 2002. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14, 343-357. 

  29. Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., D'Angelo, C., Bornberg-Bauer, E., Kudla, J. and Harter, K. 2007. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50, 347-363. 

  30. Kim, S. Y., Ma, J., Perret, P., Li, Z. and Thomas, T. L. 2002. Arabidopsis ABI5 subfamily members have distinct DNA-binding and transcriptional activities. Plant Physiol 130, 688-697. 

  31. Kim, S., Choi, H. I., Ryu, H. J., Park, J. H., Kim, M. D. and Kim, S. Y. 2004. ARIA, an Arabidopsis arm repeat protein interacting with a transcriptional regulator of abscisic acid-responsive gene expression, is a novel abscisic acid signaling component. Plant Physiol 136, 3639-3648. 

  32. Kong, Y., Chen, S., Yang, Y. and An, C. 2013. ABA-insensitive (ABI) 4 and ABI5 synergistically regulate DGAT1 expression in Arabidopsis seedlings under stress. FEBS Lett 587, 3076-3082. 

  33. Kuhn, J. M., Boisson-Dernier, A., Dizon, M. B., Maktabi, M. H. and Schroeder, J. I. 2006. The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiol 140, 127-139. 

  34. Kuromori, T., Miyaji, T., Yabuuchi, H., Shimizu, H., Sugimoto, E., Kamiya, A., Moriyama, Y. and Shinozaki, K. 2010. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci USA 107, 2361-2366. 

  35. Kuromori, T., Sugimoto, E. and Shinozaki, K. 2011. Arabidopsis mutants of AtABCG22, an ABC transporter gene, increase water transpiration and drought susceptibility. Plant J 67, 885-894. 

  36. Lara, P., Onate-Sanchez, L., Abraham, Z., Ferrandiz, C., Diaz, I., Carbonero, P. and Vicente-Carbajosa, J. 2003. Synergistic activation of seed storage protein gene expression in Arabidopsis by ABI3 and two bZIPs related to OPAQUE2. J Biol Chem 278, 21003-21011. 

  37. Lee, J. H., Terzaghi, W., Gusmaroli, G., Charron, J. B., Yoon, H. J., Chen, H., He, Y. J., Xiong, Y. and Deng, X. W. 2008. Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases. Plant Cell 20, 152-167. 

  38. Lee, J. H., Yoon, H. J., Terzaghi, W., Martinez, C., Dai, M., Li, J., Byun, M. O. and Deng, X. W. 2010. DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell 22, 1716-1732. 

  39. Lee, S. C., Lan, W. Z., Buchanan, B. B. and Luan, S. 2009. A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci USA 106, 21419-21424. 

  40. Leung, J., Bouvier-Durand, M., Morris, P. C., Guerrier, D., Chefdor, F. and Giraudat, J. 1994. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264, 1448-1452. 

  41. Leung, J., Merlot, S. and Giraudat, J. 1997. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9, 759-771. 

  42. Liu, H. and Stone, S. L. 2010. Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation. Plant Cell 22, 2630-2641. 

  43. Liu, H. and Stone, S. L. 2013. Cytoplasmic degradation of the Arabidopsis transcription factor abscisic acid insensitive 5 is mediated by the RING-type E3 ligase KEEP ON GOING. J Biol Chem 288, 20267-20279. 

  44. Lopez-Molina, L., Mongrand, S. and Chua, N. H. 2001. A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA 98, 4782-4787. 

  45. Lopez-Molina, L., Mongrand, S., Kinoshita, N. and Chua, N. H. 2003. AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation. Genes Dev 17, 410-418. 

  46. Lynch, T., Erickson, B. J. and Finkelstein, R. R. 2012. Direct interactions of ABA-insensitive(ABI)-clade protein phosphatase(PP)2Cs with calcium-dependent protein kinases and ABA response element-binding bZIPs may contribute to turning off ABA response. Plant Mol Biol 80, 647-658. 

  47. Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A. and Grill, E. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064-1068. 

  48. Maruyama, K., Todaka, D., Mizoi, J., Yohisda, T., Kidokoro, S., Matsukura, S., Takasaki, H., Sakurai, T., Yamamoto, Y. Y., Yoshiwara, K., Kojima, M., Sakakibara, H., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2012. Identification of cis-acting promoter elements in cold-dehydration-induced transcriptional pathways in Arabidopsis, rice, and soybean. DNA Res 19, 37-49. 

  49. McCourt, P. 1999. Genetic analysis of hormone signaling. Annu Rev Plant Physiol Plant Mol Biol 50, 219-243. 

  50. Meyer, K., Leube, M. P. and Grill, E. 1994. A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264, 1452-1455. 

  51. Monke, G., Altschmied, L., Tewes, A., Reidt, W., Mock, H. P., Baumlein, H. and Conrad, U. 2004. Seed-specific transcription factors ABI3 and FUS3: Molecular interaction with DNA. Planta 219, 158-166. 

  52. Muller, A. H. and Hansson, M. 2009. The barley magnesium chelatase 150-kD subunit is not an abscisic acid receptor. Plant Physiol 150, 157-166. 

  53. Mundy, J., Yamaguchi-Shinozaki, K. and Chua, N. H. 1990. Nuclear proteins bind conserved elements in the abscisic acid-responsive promoter of a rice rab gene. Proc Natl Acad Sci USA 87, 1406-1410. 

  54. Nakamura, S., Lynch, T. J. and Finkelstein, R. R. 2001. Physical interactions between ABA response loci of Arabidopsis. Plant J 26, 627-635. 

  55. Nakashima, K., Fujita, Y., Katsura, K., Maruyama, K., Narusaka, Y., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2006. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol Biol 60, 51-68. 

  56. Nakashima, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa, T., Kidokoro, S., Maruyama, K., Yoshida, T., Ishiyama, K., Kobayashi, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2009. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50, 1345-1363. 

  57. Nambara, E., Keith, K., McCourt, P. and Naito, S. 1995. A regulatory role for the ABI3 gene in the establishment of embryo maturation in Arabidopsis. Development 121, 629-686. 

  58. Nishimura, N., Hitomi, K., Arvai, A. S., Rambo, R. P., Hitomi, C., Cutler, S. R., Schroeder, J. I. and Getzoff, E. D. 2009. Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326, 1373-1379. 

  59. Nishimura, N., Sarkeshik, A., Nito, K., Park, S. Y., Wang, A., Carvalho, P. C., Lee, S., Caddell, D. F., Cutler, S. R., Chory, J., Yates, J. R. and Schroeder, J. I. 2010. PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J 61, 290-299. 

  60. Nishimura, N., Yoshida, T., Kitahata, N., Asami, T., Shinozaki, K. and Hirayama, T. 2007. ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J 50, 935-949. 

  61. Niu, X., Helentjaris, T. and Bate, N. J. 2002. Maize ABI4 binds coupling element1 in abscisic acid and sugar response genes. Plant Cell 14, 2565-2575. 

  62. Okamoto, M., Tanaka, Y., Abrams, S. R., Kamiya, Y., Seki, M. and Nambara, E. 2009. High humidity induces abscisic acid 8'-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis. Plant Physiol 149, 825-834. 

  63. Ohme-Takagi, M. and Shinshi, H. 1995. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7, 173-182. 

  64. Pandey, S., Nelson, D. C., Assmann, S. M. 2009. Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136, 136-148. 

  65. Parcy, F., Valon, C., Raynal, M., Gaubiercomella, P., Delseny, M. and Giraudat, J. 1994. Regulation of gene-expression programs during Arabidopsis seed development: Roles of the ABI3 locus and of endogenous abscisic-acid. Plant Cell 6, 1567-1582. 

  66. Park, S. Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T. F., Alfred, S. E., Bonetta, D., Finkelstein, R., Provart, N. J., Desveaux, D., Rodriguez, P. L., McCourt, P., Zhu, J. K., Schroeder, J. I., Volkman, B. F. and Cutler, S. R. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068-1071. 

  67. Reeves, W. M., Lynch, T. J., Mobin, R. and Finkelstein, R. R. 2011. Direct targets of the transcription factors ABA-Insensitive (ABI)4 and ABI5 reveal synergistic action by ABI4 and several bZIP ABA response factors. Plant Mol Biol 75, 347-363. 

  68. Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Comm 290, 998-1009. 

  69. Sanchez-Vallet, A., Lopez, G., Ramos, B., Delgado-Cerezo, M., Riviere, M. P., Llorente, F., Fernandez, P. V., Miedes, E., Estevez, J. M., Grant, M. and Molina, A. 2012. Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant Physiol 160, 2109-2124. 

  70. Santiago, J., Dupeux, F., Round, A., Antoni, R., Park, S. Y., Jamin, M., Cutler, S. R., Rodriguez, P. L. and Marquez, J. A. 2009. The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462, 665-668. 

  71. Sato, A., Sato, Y., Fukao, Y., Fujiwara, M., Umezawa, T., Shinozaki, K., Hibi, T., Taniguchi, M., Miyake, H., Goto, D. B. and Uozumi, N. 2009. Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J 424, 439-448. 

  72. Shang, Y., Yan, L., Liu, Z., Cao, Z., Mei, C., Xin, Q., Wu, F. Q., Wang, X. F., Du, S. Y., Jiang, T., Zhang, X. F., Zhao, R., Sun, H. L., Liu, R., Yu, Y. T. and Zhang, D. P. 2010. The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22, 1909-1935. 

  73. Shen, Q. and Ho, T. H. 1995. Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7, 295-307. 

  74. Shen, Y. Y., Wang, X. F., Wu, F. Q., Du, S. Y., Cao, Z., Shang, Y., Wang, X. L., Peng, C. C., Yu, X. C., Zhu, S. Y., Fan, R. C., Xu, Y. H. and Zhang, D. P. 2006. The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443, 823-826. 

  75. Sirichandra, C., Davanture, M., Turk, B. E., Zivy, M., Valot, B., Leung, J. and Merlot, S. 2010. The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS One 5, e13935. 

  76. Stone, S. L., Hauksdottir, H., Troy, A., Herschleb, J., Kraft, E. and Callis, J. 2005. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137, 13-30. 

  77. Stone, S. L., Williams, L. A., Farmer, L. M., Vierstra, R. D. and Callis, J. 2006. KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18, 3415-3428. 

  78. Suzuki, M., Kao, C. Y. and McCarty, D. R. 1997. The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell 9, 799-807. 

  79. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97, 11632-11637. T 

  80. Umezawa, T., Nakashima, K., Miyakawa,., Kuromori, T., Tanokura, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2010. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51, 1821-1839. 

  81. Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., Ishihama, Y., Hirayama, T. and Shinozaki, K. 2009. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA 106, 17588-17593. 

  82. Vahisalu, T., Kollist, H., Wang, Y. F., Nishimura, N., Chan, W. Y., Valerio, G., Lamminmaki, A., Brosche, M., Moldau, H., Desikan, R., Schroeder, J. I. and Kangasjarvi, J. 2008. SLAC1 is required for plant guard cells S-type anion channel function in stomatal signalling. Nature 452, 487-491. 

  83. Wu, F. Q., Xin, Q., Cao, Z., Liu, Z. Q., Du, S. Y., Mei, C., Zhao, C. X., Wang, X. F., Shang, Y., Jiang, T., Zhang. X. F., Yan, L., Zhao, R., Cui, Z. N., Liu, R., Sun, H. L., Yang, X. L., Su, Z. and Zhang, D. P. 2009. The magnesium-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling: new evidence in Arabidopsis. Plant Physiol 150, 1940-1954. 

  84. Yin, P., Fan, H., Hao, Q., Yuan, X., Wu, D., Pang, Y., Yan, C., Li, W., Wang, J. and Yan, N. 2009. Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol 16, 1230-1236. 

  85. Yoshida, R., Hobo, T., Ichimura, K., Mizuguchi, T., Takahashi, F., Alonso, J., Ecker, J. R. and Shinozaki, K. 2002. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiol 43, 1473-1483. 

  86. Yoshida, R., Umezawa, T., Mizoguchi, T., Takahashi, S., Takahashi, F. and Shinozaki, K. 2006. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281, 5310-5318. 

  87. Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., Shinozaki, K. and Hirayama, T. 2006. ABA-Hypersensitive Germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol 140, 115-126. 

  88. Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi, J., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2010. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61, 672-685. 

  89. Zhang, D. P., Wu, Z. Y., Li, X. Y. and Zhao, Z. X. 2002. Purification and identification of a 42-kilodalton abscisic acid-specific-binding protein from epidermis of broad bean leaves. Plant Physiol 128, 714-725. 

  90. Zhang, X., Garreton, V. and Chua, N. H. 2005. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev 19, 1532-1543. 

  91. Zhang, Y., Feng, S., Chen, F., Chen, H., Wang, J., McCall, C., Xiong, Y. and Deng, X. W. 2008. Arabidopsis DDB1-CUL4 ASSOCIATED FACTOR1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes. Plant Cell 20, 1437-1455. 

  92. Zhang, Y., Yang, C., Li, Y., Zheng, N., Chen, H., Zhao, Q., Gao, T., Guo, H. and Xie, Q. 2007. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19, 1912-1929. 

  93. Zhu, S. Y., Yu, X. C., Wang, X. J., Zhao, R., Li, Y., Fan, R. C., Shang, Y., Du, S. Y., Wang, X. F., Wu, F. Q., Xu, Y. H., Zhang, X. Y. and Zhang, D. P. 2007. Two calcium- dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19, 3019-3036. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로