$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effect of ethyl alcohol aging on the apatite formation of a low-modulus Ti-7.5Mo alloy treated with aqueous NaOH

Biomaterials and biomedical engineering, v.1 no.1, 2014년, pp.51 - 62  

Ho, Wen-Fu (Department of Materials Science and Engineering, Da-Yeh University) ,  Tsou, Hsi-Kai (Department of Neurosurgery, Taichung Veterans General Hospital) ,  Wu, Shih-Ching (Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology) ,  Hsu, Shih-Kuang (Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology) ,  Chuang, Shao-Hsuan (Department of Materials Science and Engineering, Da-Yeh University) ,  Hsu, Hsueh-Chuan (Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

The purpose of this experiment was to evaluate the apatite-formation abilities of low-modulus Ti-7.5Mo substrates treated with NaOH aqueous solutions and subsequent ethyl alcohol aging before soaking them in simulated body fluid. Specimens of Ti-7.5Mo were initially treated with 5 M NaOH at $60...

주제어

참고문헌 (48)

  1. Ahmed, T., Long, M., Silvestri, J., Ruiz, C. and Rack, H.J. (1995), "A new low modulus, biocompatible titanium alloy", Titanium 95: Sci. Technol., 2, 1760-1767. 

  2. Albayrak, O., El-Atwani, O. and Altintas, S. (2008), "Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition", Surf. Coat. Technol., 202(11), 2482-2487. 

  3. Barrere, F., Van der Valk, C.M., Meijer, G., Dalmeijer, R.A.J., De Groot, K. and Layrolle, P. (2003), "Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats", J. Biomed. Mater. Res. B. Appl. Biomater., 67(1), 655-665. 

  4. Boyd, A.R., Duffy, H. and McCann, R. (2008), "Sputter deposition of calcium phosphate/titanium dioxide hybrid thin films", Mater. Sci. Eng. C, 28(2), 228-236. 

  5. Buser, D., Broggini, N., Wieland, M., Schenk, R.K., Denzer, A.J., Cochran, D.L., Hoffmann, B., Lussi, A. and Steinemann, S.G. (2004), "Enhanced bone apposition to a chemically modified SLA titanium surface", J. Dent. Res., 83(7), 529-533. 

  6. Chen, Y., Zheng, X., Ji, H. and Ding, C. (2007), "Effect of Ti-OH formation on bioactivity of vacuum plasma sprayed titanium coating after chemical treatment", Surf. Coat. Technol., 202(3), 494-498. 

  7. Choee, J.H., Lee, S.J., Lee, Y.M., Rhee, J.M., Lee, H.B. and Khang, G. (2004), "Proliferation rate of fibroblast cells on polyethylene surfaces with wettability gradient", J. Appl. Polym. Sci., 92(1), 599-606. 

  8. De Groot, K., Geesink, R. and Klein, C.P.A.T. (1987), "Serekian P. Plasma sprayed coatings of hydroxylapatite", J. Biomed. Mater. Res., 21(12), 1375-1381. 

  9. Ducheyne, P., Radin, S., Heughebaert, M. and Heughebaert, J.C. (1990), "Calcium phosphate ceramic coatings on porous titanium: effect of structure and composition on electrophoretic deposition, vacuum sintering and in vitro dissolution", Biomater., 11(4), 244-254. 

  10. Faucheux, N., Schweiss, R., Lutzow, K., Werner, C. and Groth, T. (2004), "Selfassembled monolayers with different terminating groups as model substrates for cell adhesion studies", Biomater., 25(14), 2721-2730. 

  11. Faure, J., Balamurugan, A., Benhayoune, H., Torres, P., Balossier, G. and Ferreira, J.M.F. (2009), "Morphological and chemical characterisation of biomimetic bone like apatite formation on alkali treated Ti6Al4V titanium alloy", Mater. Sci. Eng., C, 29(4), 1252-1257. 

  12. Geesink, R.G. and Hoefnagels, N.H. (1995), "Six-year results of hydroxyapatite-coated total hip replacement", J. Bone Joint Surg. Br., 77b(4), 534-547. 

  13. Hench, L.L. (1991), "Bioceramics: From concept to clinic", J. Am. Ceram. Soc., 74(7), 1487-1510. 

  14. Ho, W.F. (2008a), "A comparison of tensile properties and corrosion behavior of cast Ti-7.5Mo with c.p. Ti, Ti-15Mo and Ti-6Al-4V alloys", J. Alloys Compd., 464(1-2), 580-583. 

  15. Ho, W.F. (2008b), "Effect of omega phase on mechanical properties of Ti-Mo alloys for biomedical application", J. Med. Bio. Eng., 28(1), 47-51. 

  16. Ho, W.F., Ju, C.P. and Chern Lin, J.H. (1999), "Structure and properties of cast binary Ti-Mo alloys", Biomater., 20(22), 2115-2122. 

  17. Ho, W.F., Lai, C.H., Hsu, H.C. and Wu, S.C. (2010), "Surface modification of a Ti-7.5Mo alloy using NaOH treatment and $Bioglass^{(R)}$ coating", J. Mater. Sci. Mater. Med., 21(5), 1479-1488. 

  18. Hsu, H.C., Tsou, H.K., Hsu, S.K., Wu, S.C., Lai, C.H. and Ho, W.F. (2011), "Effect of water aging on the apatite formation of a low-modulus Ti-7.5Mo alloy treated with aqueous NaOH", J. Mater. Sci., 46(5), 1369-1379. 

  19. Hsu, H.C., Wu, S.C., Fu, C.L. and Ho, W.F. (2010), "Formation of calcium phosphates on low-modulus Ti-7.5Mo alloy by acid and alkali treatments", J. Mater. Sci., 45(13), 3661-3670. 

  20. Im, K.H., Lee, S.B., Kim, K.M. and Lee, Y.K. (2007), "Improvement of bonding strength to titanium surface by sol-gel derived hybrid coating of hydroxyapatite and titania by sol-gel process", Surf. Coat. Technol., 202(4-7), 1135-1138. 

  21. Kawai, T., Kizuki, T., Takadama, H., Matsushita, T., Unuma, H., Nakamura, T. and Kokubo, T. (2010), "Apatite formation on surface titanate layer with different Na content on Ti metal", J. Ceram. Soc. Jpn., 118(1373), 19-24. 

  22. Kim, H.M., Miyaji, F., Kokubo, T. and Nakamura, T. (1996), "Preparation of bioactive Ti and its alloys via simple chemical surface treatment", J. Biomed. Mater. Res., 32(3), 409-417. 

  23. Klein, C.P.A.T., Patka, P., Van der Lubbe, H.B.M., Wolke, J.G.C. and De Groot, K. (1991), "Plasma-sprayed coatings of tetracalciumphosphate, hydroxyl-apatite, and $\alpha$ -TCP on titanium alloy: an interface study", J. Biomed. Mater . Res., 25(1), 53-65. 

  24. Kokubo, T. (1996), "Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process", Thermochim. Acta., 280-281, 479-490. 

  25. Kokubo, T. and Kim, H.M. (2003), "Kawashita M. Novel bioactive materials with different mechanical properties", Biomater., 24(13), 2161-2175. 

  26. Kokubo, T. and Takadama, H. (2006), "How useful is SBF in predicting in vivo bone bioactivity", Biomater., 27(15), 2907-2915. 

  27. Kokubo, T., Miyaji, F., Kim, H.M. and Nakamura, T. (1996), "Spontaneous formation of bone-like apatite layer on chemically treated titanium metals", J. Am. Ceram. Soc., 79(4), 1127-1129. 

  28. Kosmulski, M. (1993), "The role of the activity coefficients of surface groups in the formation of surface charge of oxides. Part II: Ion exchange and $\Im$ potentials", Colloid Polym. Sci., 271(11), 1076-1082. 

  29. Lautenschlager, E.P. and Monaghan, P. (1993), "Titanium and titanium alloys as dental materials", Int. Dent. J., 43(3), 245-253. 

  30. Lin, D.J., Chuang, C.C., Chern Lin, J.H., Lee, J.W., Ju, C.P. and Yin, H.S. (2007), "Bone formation at the surface of low modulus Ti-7.5Mo implants in rabbit femur", Biomater., 28(16), 2582-2589. 

  31. Liu, X.Y., Chu, P.K. and Ding, C.X. (2004), "Surface modification of titanium, titanium alloys, and related materials for biomedical applications", Mater. Sci. & Eng. R., 47(3-4), 49-121. 

  32. Lu, X., Leng, Y., Zhang, X.D., Xu, J.R., Qin, L. and Chan, C.W. (2005), "Comparative study of osteoconduction on micromachined and alkali-treated titanium alloy surfaces in vitro and in vivo", Biomater., 26(4), 1793-1801. 

  33. McNally, S.A., Shepperd, J.A., Mann, C.V. and Walczak, J.P. (2000), "The results at nine to twelve years of the use of a hydroxyapatite-coated femoral stem", J. Bone. Joint. Surg. Br., 82(3), 378-382. 

  34. Moroni, A., Toksvig-Larsen, S., Maltarello, M.C., Orienti, L., Stea, S. and Giannini, S. (1998), "A comparison of hydroxyapatite-coated, titanium-coated, and uncoated tapered external-fixation pins. an in vivo study in sheep", J. Bone. Joint. Surg. Am., 80(4), 547-554. 

  35. Nishiguchi, S., Kato, H., Fujita, H., Kim, H.M., Miyaji, F., Kokubo, T. and Nakamura, T. (1999), "Enhancement of bone-bonding strengths of titanium alloy implants by alkali and heat treatments", J. Biomed. Mater. Res., 48(5), 689-696. 

  36. Okazaki, Y., Rao, S., Tateishi, T. and Ito, Y. (1998), "Cytocompatibility of various metal and development of new titanium alloys for medical implants", Mater. Sci. Eng. A., 243(1-2), 250-256. 

  37. Ong, J.L., Lucas, L.C., Lacefield, W.R. and Rigney, E.D. (1992), "Structure, solubility and bond strength of thin calcium phosphate coatings produced by ion beam sputter deposition", Biomater., 13(4), 249-254. 

  38. Pattanayak, D.K., Kawai, T., Matsushita, T., Takadama, H., Nakamura, T. and Kokubo, T. (2009), "Effect of HCl concentrations on apatite-forming ability of NaOH-HCl- and heat-treated titanium metal", J. Mater. Sci. Mater. Med., 20(12), 2401-2411. 

  39. Ratner, B.D. (2001), "Replacing and renewing: synthetic materials, biomimetics, and tissue engineering in implant dentistry", J. Dent. Edu., 65(12), 1340-1347. 

  40. Rohanizadeh, R., Al-Sadeq, M. and LeGeros, R.Z. (2004), "Preparation of different forms of titanium oxide on titanium surface: Effects on apatite deposition", J. Biomed. Mater. Res. A., 71(2), 343-352. 

  41. Rupp, F., Scheideler, L., Olshanska, N., De Wild, M. and Wieland, M. (2006), "Geis-Gerstorfer J. Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces", J. Biomed. Mater. Res. A., 76(2), 323-334. 

  42. Sun, T. and Wang, M. (2008), "Low-temperature biomimetic formation of apatite/TiO2 composite coatings on Ti and NiTi shape memory alloy and their characterization", Appl. Surf. Sci., 255(2), 396-400. 

  43. Takadama, H., Kim, H.M., Kokubo, T. and Nakamura, T. (2001), "TEM-EDX study of mechanism of bone-like apatite formation on bioactive titanium metal in simulated body fluid", J. Biomed. Mater. Res., 57(3), 441-448. 

  44. Uchida, M., Kim, H.M., Kokubo, T., Fujibayashi, S. and Nakamura, T. (2002), "Effect of water treatment on the apatite-forming ability of NaOH-treated titanium metal", J. Biomed. Mater. Res. B. Appl. Biomater., 63(5), 522-530. 

  45. Wang, X.J., Li, Y.C., Lin, J.G., Hodgson, P.D. and Wen, C.E. (2008), "Apatite-inducing ability of titanium oxide layer on titanium surface: the effect of surface energy", J. Mater. Res., 23(6), 1682-1688. 

  46. Yamaguchi, S., Takadama, H., Matsushita, T., Nakamura, T. and Kokubo, T. (2011), "Preparation of bioactive Ti-15Zr-4Nb-4Ta alloy from HCl and heat treatments after an NaOH treatment", J. Biomed. Mater. Res. A., 97(2), 135-144. 

  47. Yee, A.J., Kreder, H.K., Bookman, I. and Davey, J.R. (1999), "A randomised trial of hydroxyapatite coated prostheses in total hip arthroplasty", Clin. Orthop. Relat. R., 366, 120-132. 

  48. Zhao, G., Schwartz, Z., Wieland, M., Rupp, F., Geis-Gerstorfer, J., Cochran, D.L. and Boyan, BD. (2005), "High surface energy enhances cell response to titanium substrate microstructure", J. Biomed. Mater. Res. A., 74(1), 49-58. 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로