$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

Since the beginning of the 21st century, emergence of innovative technologies in robotic and telepresence surgery has revolutionized minimally access surgery and continually has advanced them till recent years. One of such surgeries is endoscopic surgery, in which endoscope and endoscopic instrument...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • II 장에서는 내시경 로봇의 역사에 대해 소개하고, III 장에서는 내시경 로봇의 핵심 기술 요소, 그리고, IV 장에서는 수술응용을 위한 최근 시스템 사례를 살펴보고자 한다. 끝으로 V 장에서 본 논문의 결론과 함께 미래 내시경 로봇의 기술적 과제를 살펴보고자 한다.
  • 본 논문에서는 수술용 로봇의 최전선에 있는 내시경 로봇의 기술적 특징과 동향을 기술하고자 한다. 현재 da Vinci 로봇으로 대표되는 복강경 원격 수술로봇에 사용되는 강체 형태의 복강경과 로봇 매니퓰레이터를 제외한 유연한 형태의 내시경 로봇과 캡슐 내시경 로봇을 본 논문에서는 다루기로 한다.
  • 본 논문에서는 수술용 로봇의 최전선에 있는 내시경 로봇의 기술적 특징과 동향을 기술하고자 한다. 현재 da Vinci 로봇으로 대표되는 복강경 원격 수술로봇에 사용되는 강체 형태의 복강경과 로봇 매니퓰레이터를 제외한 유연한 형태의 내시경 로봇과 캡슐 내시경 로봇을 본 논문에서는 다루기로 한다. II 장에서는 내시경 로봇의 역사에 대해 소개하고, III 장에서는 내시경 로봇의 핵심 기술 요소, 그리고, IV 장에서는 수술응용을 위한 최근 시스템 사례를 살펴보고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
내시경 로봇 기술의 궁극적 목표는 무엇인가? 내시경 로봇 기술의 궁극적 목표는 다음과 같다. 첫째, 의료진이 일반 내시경을 직접 조작하여 내시경의 위치와 주시 방향을 조절하듯이, 내시경 로봇에서도 마찬가지로 로봇의 자세 및 위치를 자유자재로 의료진이 조정한다. 둘째, 내시경 로봇이 사전 의료 영상으로부터 계획된 안정 경로와 장애물 회피경로를 따라 움직이거나, 구동 기능을 갖춘 캡슐 내시경이 의료진의 원격 조정을 받아 해당 타켓 위치로 움직인다. 셋째, 특화된 내시경 로봇 수술 도구를 이용하여 해당 타켓 조직의 채취 및 검사 혹은 수술 치료를 포함하는 정해진 의료 임무를 수행하도록 하는 것이다. 이때 기존의 내시경 수술을 내시경 로봇이 풀어야 하는 문제점은 1) 플랫폼 안정성: 다양한 수술도구 및 내시경과 함께 유연성 및 고정 안정성 확보 2) Retraction: 조직을 당기고 봉합하고 클립을 가하기 위한 도구 강직성 확보, 3) Triangulation: 독립적인 시야 매니퓰레이션과 수술 툴간의 매니퓰레이션, 4) 크기: 다양한 수술 도구들을 갖고 소형의 크기유지, 5) 이미지: 내시경 영상의의도하지 않은 영상 회전 등이다[29].
내시경이란? 내시경은 의료목적으로 신체의 내부를 살펴보기 위한 기구를 가리키며, 내시경 기술의 발달 및 로봇 기술의 발달은 NOTES (Natural Orifice Transluminal Endoscopic Surgery) [14-16] 및 마이크로 로봇[17-21]을 포함하는 유연한 내시경 로봇의 개발을 가능하게 하였다. 특히, 1966년 광섬유의 등장으로, 내시경의 기술 개발[22]은 가속화 되었으며, 섬유의 굴절에도 빛을 전달하는 특성을 이용하여, 인체 내에서 자유자재로 굴곡 가능한 내시경으로 발전하게끔 하였고, 이러한 혁신적인 기술 형태는 기존의 강체형 광학내시경 시장[23]을 급속히 대체시키는 효과를 주었다.
내시경 로봇 시스템은 무엇으로 구성되는가? 내시경 수술 로봇 기술의 기능적 블록 다이어그램은 아래와 같다(그림 3). 내시경 로봇 시스템은 로봇 시각과 손을 보유하고 수술을 담당하는 내시경 로봇, 사전에 획득한 의료영상, 실시간 환자 및 내시경 수술 툴을 추적하는 추적센서, 영상 기반 항법 시스템, 그리고 인간-로봇 상호작용 도구로 구성된다. 내시경 로봇 시스템은 지능적 시각과 지능적 수술 도구가 핵심 기능을 수행한다.
질의응답 정보가 도움이 되었나요?

참고문헌 (81)

  1. Inspiring the Human Care - CUREXO. Available: http://www.curexo.com/ 

  2. R. H. Taylor, L. Joskowicz, B. Williamson, A. Gueziec, A. Kalvin, P. Kazanzides, R. V. Vorhis, J. Yao, R. Kumar, A. Bzostek1, A. Sahay, M. Borner, and A. Lahmer, "Computerintegrated revision total hip replacement surgery: concept and preliminary results," Medical Image Analysis, vol. 3, no. 3, pp 301-319, 1999. 

  3. W. L. Bargar, A. Bauer, and M. Borner, "Primary and revision total hip replacement using the robodoc system," Clinical Orthopaedics & Related Research, vol. 354, pp. 82-91, 1998. 

  4. Intuitive Surgical, Inc. - da Vinci Surgical System. Available: http://www.intuitivesurgical.com/ 

  5. G. Hubens, H. Coveliers, L. Balliu, M. Ruppert, and W. Vaneerdeweg, "A performance study comparing manual and robotically assisted laparoscopic surgery using the da Vinci system," Surgical Endoscopy, vol. 17, pp. 1595-1599, 2003. 

  6. G. Haber, M. A. White, R. Autorino, P. F. Escobar, M. D. Kroh, S. Chalikonda, R. Khanna, S. Forest, B. Yang, F. Altunrende, R. J. Stein, and J. H. Kaouk, "Novel robotic da vinci instruments for laparoendoscopic single-site surgery," Urology, vol. 76, no. 6, pp. 1279-1282, 2010. 

  7. T. E. Ahlering, D. Skarecky, D. Lee, and R. V. Clayman, "Successful transfer of open surgical skills to a laparoscopic environment using a robotic interface: initial experience with laparoscopic radical prostatectomy," Urology, vol. 170, no. 5, pp. 1738-1741, 2003. 

  8. K. H. Rha, "The present and future of robotic surgery," Journal of Korean Medical Association (in Korean), vol. 51, no. 1, pp. 67-73, 2008. 

  9. K. Masamune and J. Hong, "Advanced imaging and robotics technologies for medical applications," International Journal of Optomechatronics, vol. 5, pp. 299-321, 2011. 

  10. R. H. Taylor and D. Stoianovici, "Medical robotics in computerintegrated surgery," IEEE Trans. Robotics and Automation, vol. 19, no. 5, pp. 765-781, 2003. 

  11. T. Dohi, "Computer aided surgery and micro machine," Proceedings of the 6-th International Symposium on Micro Machine and Human Science, pp. 21-24, 1995. 

  12. A. R. Gunkel, M. Vogele, A. Martin, R. J. Bale, W. F. Thumfart, and W. Freysinger, "Computer-aided surgery in the petrous bone," Laryngoscope, vol. 109, no. 11, pp. 1793-1799, 1995. 

  13. R. Seemann and A. Wagner, "Basic research and 12 years of clinical experience in computer-assisted navigation technology: A review," International Journal of Oral and Maxillofacial Surgery, vol. 34, no. 1, pp. 1-8, 2005. 

  14. I. Halim and A. Tavakkolizadeh, "NOTES: The next surgical revolution," International Journal of Surgery, vol. 6, no. 4, pp. 273-276, 2008. 

  15. D. Canes, et al., "Transumbilical single-port surgery: evolution and current status," European Urology, vol. 54, pp. 1020-1030, 2008. 

  16. M. M. Tiwari, J. F. Reynoso, A. C. Lehman, A. W. Tsang, S. M. Farritor, and D. Oleynikov, "In vivo miniature robots for natural orifice surgery: State of the art and future perspectives," World Journal of Gastrointestinal Surgery, vol. 2, no. 6, pp. 217-223, 2010. 

  17. K. Kim, K. H. Won, and H. Choi, "Technical characteristics and trends of capsule endoscope," Journal of Korea Information and Communications Society (in Korean), vol. 37, no. 4, pp. 329-337, 2012. 

  18. K. Kim and T. Kim, "Recent advances in medical image processing and diagnosis technology for capsule endoscope systems," Journal of Korea Information and Communications Society (in Korean), vol. 38, no. 9, pp. 802-812, 2013. 

  19. K. Wang, G. Yan, P. Jiang, and D. Ye, "A wireless robotic endoscope for gastrointestine," IEEE Trans. Robotics, vol. 24, no. 1, pp. 206-210, 2008. 

  20. A. Moglia, A. Menciassi, M. O. Schurr, and P. Dario, "Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems," Biomed Microdevices, vol. 9, pp. 235-243, 2007. 

  21. S. Yim and M. Sitti, "Design and rolling locomotion of a magnetically actuated soft capsule endoscope," IEEE Trans. Robotics, vol. 28, no. 1, pp. 183-194, 2012. 

  22. M. Tomikawa, T. Akahoshi, N. Kinjo, H. Uehara, N. Hashimoto, Y. Nagao, M. Kamori, R. Kumashiro, Y. Maehara, and M. Hashizume, "Rigid and flexible endoscopic rendezvous in spatium peritonealis may be an effective tactic for laparoscopic megasplenectomy: significant implications for pure natural orifice transluminal endoscopic surgery," Surgical Endoscopy, vol. 26, pp. 3573-3579, 2012. 

  23. A. Perneczky and G. Fries, "Endoscope-assisted Brain Surgery: Part 1-Evolution, Basic Concept, and Current Technique," Neurosurgery, vol. 42, no. 2, pp. 219-224, 1998. 

  24. G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, "Wireless capsule endoscopy," Nature, vol. 405, no. 6785, pp. 417-418, 2000. 

  25. G. Gay, M. Delvaux, and J.-F. Rey, "The role of video capsule endoscopy in the diagnosis of digestive diseases: a review of current possibilities," Endoscopy, vol. 36, no. 10, pp. 913-920, 2004. 

  26. R. Autorino, J. A. Cadeddu, M. M. Desai, M. Gettman, I. S. Gill, L. R. Kavoussi, E. Lima, F. Montorsi, L. Richstone, J. U. Stolzenburg, and J. H. Kaouk, "Laparoendoscopic single-site and natural orifice transluminal endoscopic surgery in urology: a critical analysis of the literature," European Urology, vol. 59, pp. 26-45, 2011. 

  27. D. J. Abbott, C. Becke, R. I. Rothstein, and W. J. Peine, "Design of an endoluminal NOTES robotic system," Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 410-416, 2007. 

  28. M. E. Rentschler, J. Dumpert, S. R. Platt, S. M. Farritor, and D. Oleynikov, "Natural orifice surgery with an endoluminal mobile robot," Surgical Endoscopy, vol. 21, pp. 1212-1215, 2007. 

  29. X. Wang and M. Q.-H. Meng, "Robotics for natural orifice transluminal endoscopic surgery: a review," Journal of Robotics, vol. 2012, Article ID 512616, 2012. 

  30. L. M. Su, B. P. Vagvolgyi, R. Agarwal, C. E. Reiley, R. H. Taylor, and G. D. Hager, "Augmented reality during robot-assisted laparoscopic partial nephrectomy: Toward real-time 3D-CT to stereoscopic video registration," Urology, vol. 73, no. 4, pp. 896-900, 2009. 

  31. A. R. Tumlinson, J. K. Barton, B. Povazay, H. Sattman, A. Unterhuber, R. A. Leitgeb, and W. Drexler, "Endoscope-tip interferometer for ultrahigh resolution frequency domain optical coherence tomography in mouse colon," Optics Express, vol. 14, no. 5, pp. 1878-1887, 2006. 

  32. L. P. Hariri, Z. Qiu, A. R. Tumlinson, D. G. Besselsen, E. W. Gernere, N. A. Ignatenko, B. Povazay, B. Hermann, H. Sattmann, J. McNally, A. Unterhuber, W. Drexler, and J. K. Barton, "Serial endoscopy in azoxymethane treated mice using ultra-high resolution optical coherence tomography," Cancer Biology & Therapy, vol. 6, no. 11, pp. 1753-1762, 2007. 

  33. G. J. Tearney, S. A. Boppart, B. E. Bouma, M. E. Brezinski, N. J. Weissman, J. F. Southern, and J. G. Fujimoto, "Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography," Optics Letters, vol. 21, no. 7, pp. 543, 1996. 

  34. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science, vol. 276, no. 5321, pp. 2037-2039, 1997. 

  35. H. Bertani, R. Conigliaro, and F. Pigo, "New techniques in endoscopy: confocal laser endomicroscopy," in New Techniques in Gastrointestinal Endoscopy, Prof. Oliviu Pascu (Ed.), InTech, 2011. 

  36. B. Abrat and A. Masters, "Endoscopic confocal microscopy moves into the clinic," Biophotonics International, Nov. 2006. 

  37. W. Piyawattanametha and T. D. Wang, "MEMS-based dual axes confocal microendoscopy," IEEE J. Selected Topics on Quantum Electronics, vol. 16, no. 4, pp. 804-814, Jul. 2010. 

  38. T. E. Yusuf, G. C. Harewood, J. E. Clain, and M. J. Levy, "International survey of knowledge of indications for EUS," Gastrointestinal Endoscopy, vol. 63, no. 1, pp. 107-111, Jan. 2006. 

  39. J. Dargahi, M. Parameswaran, and S. Payandeh, "A micromachined piezoelectric tactile sensor for an endoscopic grasper-theory, fabrication and experiments," Journal of Microelectromechanical Systems, vol. 9, no. 3, pp. 329-335, 2000. 

  40. J. Dargahi and S. Najarian, "Advances in tactile sensors design/manufacturing and its impact on robotics applications - a review," Industrial Robot: An International Journal, vol. 32, no. 3, pp. 268-281, 2005. 

  41. P. Puangmali, K. Althoefer, L. D. Seneviratne, D. Murphy, and P. Dasgupta, "State-of-the-art in force and tactile sensing for minimally invasive surgery," IEEE Sensors Journal, vol. 8, no. 4, pp. 371-381, Apr. 2008. 

  42. K. Takashima, K. Yoshinaka, T. Okazaki, and K. Ikeuchi, "An endoscopic tactile sensor for low invasive surgery," Sensors and Actuators A: Physical, vol. 119, pp. 372-383, 2005. 

  43. Aurora Electromagnetic Measurement System - 3D Tracking for Medical Guidance | NDI. Available: http://www.ndigital.com/medical/aurora.php 

  44. X. Li, B. Li, S. Song, C. Hu, and M. Q.-H. Meng, "Endoscopes shape reconstruction based on electromagnetic localization and curve fitting," Proc. IEEE Int. Conf. on Robotics and Biomimetics, pp. 819-824, 2012. 

  45. Y. Haga, T. Mineta, W. Makishi, T. Matsunaga, and M. Esashi, "Active bending catheter and electric endoscope using shape memory alloy," in Shape Memory Alloys, Corneliu Cismasiu (Ed.), InTech, 2010. 

  46. A. Menciassi, J. H. Park, S. Lee, S. Gorini, P. Dario, and J. Park, "Robotic solutions and mechanisms for a semi-autonomous endoscope," Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 1379-1384, 2002. 

  47. P. Dario, M. C. Carrozza, L. Lencioni, B. Magnani, and S. D'Attanasio, "A micro robotic system for colonoscopy," Proc. IEEE Int. Conf. Robotics & Automation, pp. 1567-1572, 1997. 

  48. M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson, and J. Smith, "Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review," Smart Materials and Structures, vol. 7, no. 6, R15-R30, 1998. 

  49. B. Kim, S. Park, C. Y. Jee, and S. Yoon, "An earthworm-like locomotive mechanism for capsule endoscopes," Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 2997-3002, 2005. 

  50. B. Kim, S. Lee, J. H. Park, and J. Park, "Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs)," IEEE/ASME Trans. Mechatronics, vol. 10, no. 1, pp. 77-86, 2005. 

  51. C. Hayhurst, P. Byrne, P. R. Eldridge, and C. L. Mallucci, "Application of electromagnetic technology to neuronavigation: a revolution in image-guided neurosurgery," Journal of Neurosurgery, vol. 111, no. 6, pp. 1179-1184, Dec. 2009. 

  52. R. Lapeer, M. S. Chen, G. Gonzalez, A. Linney, and G. Alusi, "Image-enhanced surgical navigation for endoscopic sinus surgery: evaluating calibration, registration and tracking," Int. J. Med Robot, vol. 4, no. 1, pp. 32-45, Mar. 2008. 

  53. S. Zhang, Y. Guo, and A. Ritter, "Capsule robot in gastrointestinal tract: a case study for robot programming and navigation," Selected Topics in Micro/Nano Robotics for Biomedical Application, Y. Guo (Ed.), Springer, 2013. 

  54. G. Ciuti, M. Visentini-Scarzanella, A. Dore, A. Menciassi, P. Dario, and G.-Z. Yang, "Intra-operative monocular 3D reconstruction for image-guided navigation in active locomotion capsule endoscopy," Proc. of IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 768-774, 2012. 

  55. D. J. Mirota, H. Wang, R. H. Taylor, M. Ishii, G. L. Gallia, and G. D. Hager, "A system for video-based navigation for endoscopic endonasal skull base surgery," IEEE Trans Medical Imaging, vol. 31, no. 4, pp. 963-76, Apr. 2012. 

  56. N. C. Atuegwu, L. Mawn, and R. Galloway, "Transorbital endoscopic image guidance," Proc. of IEEE Engineering in Medicine and Biology Society, pp. 4663-4666, 2007. 

  57. X. Luo, T. Reichl, M. Feuerstein, T. Kitasaka, and K. Mori, "Modified hybrid bronchoscope tracking based on sequential Monte Carlo sampler: dynamic phantom validation," Proc. Asian Conference on Computer Vision, pp. 409-421, 2010. 

  58. T. Reichl, X. Luo, M. Menzel, H. Hautmann, K. Mori, and N. Navab, "Hybrid electromagnetic and image-based tracking of endoscopes with guaranteed smooth output," Int. Journal of Computer Assisted Radiology and Surgery, vol. 8, pp. 955-965, 2013. 

  59. H. Yamashita, A. Iimura, E. Aoki, T. Suzuki, T. Nakazawa, E. Kobayashi, M. Hashizume, I. Sakuma, and T. Dohi, "Development of endoscopic forceps manipulator using multislider linkage mechanisms," Proc. of the 1st Asian Symposium on Computer Aided Surgery - Robotic and Image guided Surgery, PO14, 2005. 

  60. H. Yamashita, D. Kim, N. Hata, and T. Dohi, "Multi-slider linkage mechanism for endoscopic forceps manipulator," Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 2577-2582, 2003. 

  61. C. M. Seow, W. J. Chin, C. A. Nelson, A. Nakamura, S. M. Farritor, and D. Oleynikov, "Articulated manipulator with multiple instruments for natural orifice transluminal endoscopic surgery," J. Med. Devices, vol. 7, no. 4, 041004, 2013. 

  62. A. Lehman, J. Dumpert, N. A. Wood, L. Redden, A. Q. Visty, S. Farritor, B. Varnell, and D. Oleynikov, "Natural orifice cholecystectomy using a miniature robot," Surgical Endoscopy, vol. 23, no. 2, pp. 260-266, 2009. 

  63. J. M. Oliveira, Y. Chen, and I. W. Hunter, "Two-axis bend sensor design, kinematics and control for a continuum robotic endoscope," Proc. IEEE International Conference on Robotics and Automation, pp. 704-710, 2013. 

  64. J. Peirs, D. Reynaerts, and H. V. Brussel, "A miniature manipulator for integration in a self-propelling endoscope," Sensors and Actuators A: Physical, vol. 92, pp. 343-349, 2001. 

  65. C. Vara-Thorbeck, V. F. Munoz, R. Toscano, J. Gomez, J. Fernandex, M. Felices, and A. Garcia-Cerezo, "A new robotic endoscope manipulator," Surgical Endoscopy, vol. 15, pp. 924-927, 2001. 

  66. M. Fleute, Shape Reconstruction for Computer Assisted Surgery based on Non-Rigid Registration of Statistical Models with Intra-Operative Point Data and X-ray Images, Doctoral dissertation, Joseph Fourier University, 2004. 

  67. B. C. Shah, S. L. Buettner, A. C. Lehman, S. M. Farritor, and D. Oleynikov, "Miniature in vivo robotics and novel robotic surgical platforms," Urologic Clinics of North America, vol. 36, no. 2, pp. 251-263, 2009. 

  68. K.-Y. Ho, et al., "Endoscopic submucosal dissection of gastric lesions by using a Master and Slave Transluminal Endoscopic Robot (MASTER)," Gastrointestinal Endoscopy, vol. 72, no. 3, pp. 593-599, 2010. 

  69. S. N. Shaikh and C. C. Thompson, "Natural orifice translumenal surgery: Flexible platform review," World Journal of Gastrointestinal Surgery, vol. 2, no. 6, pp. 210-216, 2010. 

  70. D. K. Mullady, D. B. Lautz, and C. C. Thompson, "Treatment of weight regain after gastric bypass surgery when using a new endoscopic platform: initial experience and early outcomes," Gastrointestinal Endoscopy, vol. 70, no. 3, pp. 440-444, 2009. 

  71. S. Park, R. A. Bergs, R. Eberhart, L. Baker, R. Fernandez, and J. A. Cadeddu, "Trocar-less instrumentation for laparoscopy," Annals of Surgery, vol. 245, no. 3, pp. 379-384, 2007. 

  72. The BioRobotics Institute. Available: http://sssa.bioroboticsinstitute.it/ 

  73. Science and Technology of Robotics in Medicine in Vanderbilt University. Available: https://my.vanderbilt.edu/stormlab/research/ 

  74. Advanced Robotics and Mechanism Applications. Available: http://arma.vuse.vanderbilt.edu/ 

  75. Computer Integrated Interventional Systems Laboratory in JHU. Available: https://ciis.lcsr.jhu.edu/dokuwiki/doku.php 

  76. D. J. Mirota, M. Ishii, and G. D. Hager, "Vision-based navigation in image-guided interventions," Annual Review of Biomedical Engineering, vol. 13, pp. 297-320, 2011. 

  77. Advanced Therapeutic and Rehabilitation Engineering laboratory in Tokyo University. Available: http://www.atre.t.u-tokyo.ac.jp/en/component/option,com_frontpage/Itemid,1/ 

  78. Advanced Robotics and Mechanism Applications. Available: http://arma.vuse.vanderbilt.edu/ 

  79. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, "Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging," J. Biophotonics, vol. 3, no. 5-6, pp. 385-407, 2010. 

  80. H. Atsumi, M. Matsumae, A. Hirayama, K. Sato, H. Shigematsu, G. Inoue, J. Nishiyama, M. Yoshiyama, and J. Tominaga, "Newly developed electromagnetic tracked flexible neuroendoscope," Neurologia Medico-chirurgica, vol. 51, no. 8, pp. 611-616, 2011. 

  81. H. Liao, H. Ishihara, H. H. Tran, K. Masamune, I. Sakuma, and T. Dohi, "Precision-guided surgical navigation system using laser guidance and 3D autostereoscopic image overlay," Computerized Medical Imaging and Graphics, vol. 34, no. 1, pp. 46-54, 2010. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로