$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

To investigate lignification process and its physiological significance under water-deficit condition, the responses of peroxidases, polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL) in relation to leaf water status to the short term of water deficit treatment in the leaves with differe...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • 4). For the response of peroxidases activity to water-deficit treatment, the activity of four peroxidases examined in this study (GPOD, APOD, CPOD and SPOD) was depressed especially in middle and old leaves when compared with that of control leaves, respectively. In general, the isozymes of peroxidases participate in the modulation of cell wall properties during plant growth partly through catalyzing the formation of covalent crosslinks after oxidation of ester- and ether-bound phenolic acids and also through the oxidative coupling of cinnamoyl alcohol moieties to generate lignin (Iiyama et al.
  • , 2001), to drought treatment in forage rape plants. In this study, thus, the responses of peroxidases, PPO and PAL in relation to leaf water status to the short term of water deficit treatment in the leaves with different maturities in forage rape.

이론/모형

  • The amount of lignin was calculated from a linear calibration curve (0~40 μ g) built with commercial alkali lignin (Aldrich, Steinheim, Germany). Total phenol content was determined by FolinCiocalteau method (Singleton and Rossi, 1965). The phenolic contents were estimated using a standard curve using gallic acid.
  • Tukey’s studentized range test was used to compare the means of separate replicates.
본문요약 정보가 도움이 되었나요?

참고문헌 (23)

  1. Benhamou, N. 1995. Immunocytochemistry of plant defense mechanisms induced upon microbial attack. Microscopy Research and Technique. 31:63-78. 

  2. Bittman, S. and Simpson, G.M. 1989. Drought effects on water relations of three cultivated grasses. Crop Science. 29:992-999. 

  3. Cavalcanti, F.R., Oliveira, J.T.A., Martins-Miranda, A.S., Viegas, R.A. and Silveira, J.A.G. 2004. Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves. New Phytologist. 163: 563-571. 

  4. D'Cunha, G.B., Satyanaraan, V. and Nair, P.M. 1996. Stabilization of phenylalanine ammonia-lyase containing Rhodotorula glutinis cells for the continuous synthesis of phenylalanine methyl ester. Enzyme and Microbial Technology. 19:421-427. 

  5. Foyer, C.H. and Noctor, G. 2003. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum. 119:355-364. 

  6. Iiyama, K., Lam, T.B.T. and Stone, B.A. 1994. Covalent cross-links in the cell wall. Plant Physiology. 104:315-320. 

  7. Jouili, H. and El Ferjani, E. 2003. Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess. Comptes Rendus Biologies. 326:639-644. 

  8. Jung, S. 2004. Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought. Plant Science. 166:459-466. 

  9. Katerji, N., van Hoorn, J.W., Hamdy, A., Mastrorilli, M. and Mou Karzel, E. 1997. Osmotic adjustment of sugar beets in response to soil salinity and its influence on stomatal conductance, growth and yields. Agricultural Water Management. 34:57-69. 

  10. Kim, T.H., Lee, B.R., Jung, W.J., Kim, K.Y., Avice, J.C. and Ourry, A. 2004. De novo protein synthesis in relation to ammonia and proline accumulation in water stressed white clover. Functional Plant Biology. 31:847-855. 

  11. Lee, B.R., Jin, Y.L., Avice, J.C., Cliquet, J.B., Ourry, A. and Kim, T.H. 2009a. Increased proline loading to phloem and its effects on nitrogen uptake and assimilation in water-stressed white clover (Trifolium repens). New Phytologist. 182:654-663. 

  12. Lee, B.R., Jin, Y.L., Jung, W.J., Avice, J.C., Morvan-Bertrand, A., Ourry, A., Park, C.W. and Kim, T.H. 2008a. Water-deficit accumulates sugars by starch degradation--not by de novo synthesis--in white clover leaves (Trifolium repens). Physiologia Plantarum. 134:403-411. 

  13. Lee, B.R., Jung, W.J., Kim, K.Y., Avice, J.C., Ourry, A. and Kim, T.H. 2005. Transient increase of de novo amino acid synthesis and its physiological significance in water-stressed white clover. Functional Plant Biology. 32: 831-838. 

  14. Lee, B.R., Jung, W.J., Lee, B.H., Avice, J.C., Ourry, A. and Kim, T.H. 2008b. Kinetics of drought-induced pathogenesis-related proteins and its physiological significance in white clover leaves. Physiologia Plantarum. 132:329-337. 

  15. Lee, B.R., Kim, K.Y., Jung, W.J., Avice, J.C., Ourry, A. and Kim, T.H. 2007. Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). Journal of Experimental Botany. 58: 1271-1279. 

  16. Lee, B.R., Li, L.S., Jung, W.J., Avice, J.C., Ourry, A. and Kim, T.H. 2009b. Water deficit-induced oxidative stress and the activation of antioxidant enzymes in white clover leaves. Biologia Plantarum. 53:505-510. 

  17. Lee, B.R., Muneer, S., Park, S.H., Zhang, Q. and Kim, T.H. 2013. Ammonium-induced proline and sucrose accumulation, and their significance in antioxidative activity and osmotic adjustment. Acta Physiologae Plantarum. 35:2655-2664. 

  18. Quiroga, M., Guerrero, C., Botella, M.A., Barcelo, A., Amaya, I., Medina, M.I., Alonso, F.J., Forchetti, S.M., Tigier, H. and Valpuesta, V. 2000. A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiology 122:1119-1127. 

  19. Rivero, R.M., Ruiz, J.M., Garcia, P.C., Lopez-Lefebre, L.R., Sanchez, E. and Romero, L. 2001. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Science. 160:315-321. 

  20. Sanchez, F.J., De Andres, E.F. Tenorio, J.L. and Ayerbe, L. 2004. Growth of epicotyls, turgor maintenance and osmotic adjustment in pea plants (Pisum sativum L.) subjected to water stress. Field Crops Research. 86:81-90. 

  21. Singleton, V.L. and Rossi, J.A. 1965. Colorimetry of total phenolic with phosphomolybdicphosphotungstic acid reagents. American Journal of Enology and Viticulture. 16:144-158. 

  22. Siriphanich, J. and Kader, A.A. 1985. Effects of $CO_2$ on cinnamic acid 4-hydroxylase in relation to phenolic metabolism in lettuce tissue. Journal of the American Society for Horticultural Science. 110:333-335. 

  23. Souza, R.P., Machado, E.C. Silva, J.A.B. Lagoa, A.M.M.A. and Silveira, J.A.G. 2004. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environmental and Experimental Botany. 51:45-56. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로