$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

제올라이트: 압력순환형 흡착제로서의 특성과 CO2 흡착성능
Zeolites: Their Features as Pressure Swing Adsorbents and CO2 Adsorption Capacity 원문보기

Journal of environmental science international = 한국환경과학회지, v.23 no.5, 2014년, pp.943 - 962  

김문현 (대구대학교 환경공학과) ,  조일흠 (대구대학교 환경공학과) ,  최상옥 (삼성비피화학(주) 시험연구팀) ,  추수태 (삼성비피화학(주) 시험연구팀)

Abstract AI-Helper 아이콘AI-Helper

Industrial gas drying, dilute gas mixtures purification, air fractionation, hydrogen production from steam reformers and petroleum refinery off-gases, etc are conducted by using adsorptive separation technology. The pressure swing adsorption (PSA) has certain advantages over the other methods, such ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Table 2에 주어진 여러 종류들의 흡착제들 중에서 이러한 MOF 및 ZIF 계열의 금속-유기 골격계 다공성물질들의 최근 연구동향들에 대해서는 타 연구그룹들에 의해 상세히 고찰되었을 뿐만 아니라(Li 등, 2009; D'Alessandro 등, 2010; Phan 등, 2010; Liu 등, 2012), CO2 흡착분리용 PSA 흡착제로서의 잠재성과 한계들에 대해서는 선행연구에서 충분히 다루어졌으므로(Kim 등, 2013), 본 연구에서는 제올라이트들을 중심으로 CO2 흡착제로서의 가능성과 해결과제들을 중심으로 살펴보고자 한다.
  • 이러한 사실은 1980년대 이후 개발되고 있는 수많은 제올라이트들은 CO2 등의 흡착분리용 흡착제로서 한계를 가지고 있음을 시사하고, 이러한 이유 때문에 상기 A, X, Y 등과 같은 재래형 제올라이트들의 비중은 여전히 중요한 위치를 차지하고 있다. 아래에서는 상기 주요 제올라이트들을 포함하여 최근에 주목받고 있는 몇몇 제올라이트들(SSZ-13, Rho 등)의 골격과 주요 물성들(채널구조, 세공크기, 비표면적 등)과 CO2 흡착분리용 PSA 흡착제로서의 가능성을 고찰해 보고자 한다.
  • Barrer(1948)에 의해 최초의 합성 제올라이트인 mordenite가 보고된 이래 제올라이트 A, X, Y, ZSM-5, SAPO-11, ITQ-29 등등의 수많은 합성 제올라이트들이 개발되었고(Flanigen 등, 2010), IZA (International Zeolite Association)에 의해 제올라이트 골격코드(framework code)를 부여받았다. 이와 같은 합성 제올라이트들의 골격코드별 세공크기, 비표면적, CO2 흡착성능 등에 관해서는 아래에서 보다 더 상세히 다루고자 한다.

가설 설정

  • 기체혼합물들의 흡착․분리 목적으로 PSA 기술을 적용할 경우, 흡착온도는 공정여건에 따라 결정되므로 흡착압력의 변화에 따른 흡착제의 흡착성능이 해당 공정의 성능을 일차적으로 좌우하게 될 것이다. 즉, 기체혼합물들의 흡착분리성능은 위에서 논의되어진 등온흡착선의 유형들에 따라 현저하게 달라질 것이다. 이와 같은 점들을 이해하기 위해서는 4 ~ 6 bar의 압력에서 일정 시간 동안 기체혼합물들의 흡착이 이루어진 후에 흡착제 재생과 피흡착제 탈착을 위하여 상압으로 압력순환이 이루어졌을 때 기체성분의 흡․탈착량 변화를 등온흡착선 유형별로 살펴볼 필요성이 있다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
다공성 흡착제의 목적은 무엇인가? 다공성 흡착제(adsorbent)들은 기체혼합물들을 구성하고 있는 각 기체성분별로 분별하기 위한 분리(separation)와 기체혼합물들 내에 존재하는 미량의 특정 기체 성분을 원하는 수준까지 낮추기 위한 정제(purification)를 목적으로 하는 기체 분리정제산업 분야에서 널리 사용되고 있다. 기체혼합물들의 분리·정제를 위해 사용되는 흡착공정들은 기체성분들의 강한 화학흡착(chemisorption)이 아닌 가역성을 갖는 물리흡착(physisorption)이나 매우 약한 화학흡착의 원리를 이용하기 때문에, 흡수공정(absorption)에 비해 에너지효율 측면에서 많은 장점을 가지고 있다(Yang, 2003; D'Alessandro 등, 2010).
기체 분리․정제 분야에서 전동적으로 널리 사용되어져 온 흡착제들은 무엇인가? 따라서, 흡착제들을 구성하는 물질의 종류, 골격(framework), 세공성(porosity), 채널구조(channel structure), 세공크기(pore size), 비표면적(specific surface area) 등등의 물리화학적 요소들 뿐만 아니라, 피흡착제인 기체분자들이 가지고 있는 분자크기, 분극률(polarizability) 등과 같은 물리화학적, 전자적 특성들도 기체혼합물 흡착분리용 흡착제 개발에 있어서 매우 중요하게 고려되어야 할 것이다(Li 등, 2009; D'Alessandro 등, 2010; Kim 등, 2013). 다공성 제올라이트, 활성탄(activated carbon, AC), 알루미나, 실리카겔 등은 기체 분리․정제 분야에서 전통적으로 널리 사용되어져 온 가장 대표적인 흡착제들이며, 최근에는 탄소분자체(carbon molecular sieve, CMS), 금속-유기 골격체(metal-organic framework, MOF)와 제올라이트 이미다졸 골격체(zeolitic imidazolate framework, ZIF)가 CO2, H2 등의 새로운 흡착제로서 활발히 연구되고 있다(Yaghi 등, 1995; Tagliabue 등, 2009; Park 등, 2006; Kim 등, 2013).
temperature swing adsorption에서 사용하는 온도순환방식은 무엇인가? 이때 흡착제의 재사용을 위해 흡착공정 종료 후 적합한 방법으로 흡착된 CO2를 탈착시키는 흡착제 재생(regeneration) 공정이 요구되는데, 탈착을 위한 driving force에 따라 PSA, 온도순환흡착(temperature swing adsorption, TSA), 불활성 기체에 의한 purge 등으로 구분될 수 있고, PSA와 TSA 기술이 가장 널리 적용되고 있다(Yang, 2003). PSA 기술의 경우 흡착제에 가해진 기체혼합물의 압력을 감소시키거나 기체혼합물 중 원하는 기체성분으로 분리된 흐름의 일부를 다시 흡착탑에 도입시킴으로써 흡착제를 재생시키는 방법을 적용하는 반면에, TSA에서는 이러한 흡착제 재생 driving force로 기체분자들의 흡착을 낮은 온도에서 수행하고 상대적으로 높은 온도에서 흡착된 기체분자들을 탈착시키는 온도순환방식을 사용한다. 흡착효율, 운영비를 포함한 경제성 등을 고려할 때, 기체혼합물을 구성하고 있는 기체성분들 간의 조성차이가 크지 않거나 CO2 대비 흡착정도가 현저한 차이를 보이면 일반적으로 PSA 기술을 적용한다(Yang, 2003; Tagliabue등, 2009).
질의응답 정보가 도움이 되었나요?

참고문헌 (104)

  1. Ahn, H. W., Lee, C. H., 2004, Effects of capillary condensation on adsorption and thermal desorption dynamics of water in zeolite 13X and layered beds, Chem. Eng. Sci., 59, 2727-2743. 

  2. Akten, E. D., Siriwardane, R. V., Sholl, D. S., 2003, Monte carlo simulation of single-and binarycomponent adsorption of $CO_2$ , $N_2$ , and $H_2$ in zeolite Na-4A, Energy Fuels, 17, 977-983. 

  3. Argauer, R. J., Landolt, G. R., 1972, Crystalline zeolite ZSM-5 and method of preparing the same, U.S. Patent 3,702,886A. 

  4. Barrer, R. M., 1948, Synthesis and reactions of mordenite, J. Chem. Soc., 2158-2163. 

  5. Barthomeuf, D., 2003, Framework induced basicity in zeolites, Micropor. Mesopor. Mater., 66, 1-14. 

  6. Barrett, P. A., Diaz-Cabanas, M. J., Camblor, M. A., 1999, Crystal structure of zeolite MCM-35 (MTF), Chem. Mater., 11, 2919-2927. 

  7. Blackwell, C. S., Broach, R. W., Gatter, M. G., Holmgren, J. S., Jan, D. Y., Lewis, G. J., Mezza, B. J., Messa, T. M., Miller, M. A., Moscoso, J. G., Patton, R. L., Rohde, L. M., Schoonover, M. W., Sinkler, W., Wilson, B. A., Wilson, S. T., 2003, Open-framework materials synthesized in the $TMA^+/TEA^+$ mixedtemplate system: The new low Si/Al ratio zeolites UZM-4 and UZM-5, Angew. Chem. Int. Ed., 42, 1737-1740. 

  8. Breck, D. W., Eversole, W. G., Milton, R. M., Reed, T. B., Thomas, T. L., 1956, Crystalline zeolites. I. The properties of a new synthetic zeolite, Type A, J. Am. Chem. Soc., 78, 5963-5971. 

  9. Brunauer, S., Deming, L. S., Deming, W. E., Teller, E., 1940, On a theory of the van der Waals adsorption of gases, J. Am. Chem. Soc., 62, 1723-1732. 

  10. Cavenati, S., Grande, C. A., Rodrigues, A. E., 2004, Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures, J. Chem. Eng. Data, 49, 1095-1101. 

  11. Chatelain, T., Patarin, J., Fousson, E., Soulard, M., Guth, J. L., Schulz, P., 1995, Synthesis and characterization of high-silica zeolite RHO prepared in the presence of 18-crown-6 ether as organic template, Micropor. Mater., 4, 231-238. 

  12. Chokkalingam, A., Kawagoe, H., Watanabe, S., Moriyama, Y., Komura, K., Kubota, Y., Kim, J. H., Seo, G., Vinu, A., Sugi, Y., 2013, Isopropylation of biphenyl over ZSM-12 zeolites, J. Mol. Catal. A, 367, 23-30. 

  13. Corma, A., Novarro, M, T., Perez-Parlento, J., 1994, Synthesis of an ultralarge pore titanium silicalite isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons, J. Chem. Soc., Chem. Commun., 147-148. 

  14. Corma, A., Rey, F., Rius, J., Sabater, M. J., Valencia, S., 2004a, Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites, Nature, 431, 287-290. 

  15. Corma, A., Diaz-Cabanas, M. J., Rey, F., Nicolopoulus, S., Boulahya, K., 2004b, ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14-and 12-ring channels, and its catalytic implications, Chem. Commun., 1356-1357. 

  16. Cote, A. P., Benin, A. I., Ockwig, N. W., O'Keeffe, M., Matzger, A. J., Yaghi, O. M., 2005, Porous, crystalline, covalent organic frameworks, Science, 310, 1166-1170. 

  17. Cronstedt, A. F., 1756, Ron och beskriting om en obekant barg ant, som kallas zeolites, Kongl Vetenskaps Akademiens Handlingar Stockholm, 17, 120-130 (in Swedish). 

  18. D'Alessandro, D. M., Smit, B., Long, J. R., 2010, Carbon dioxide capture: Prospects for new materials, Angew. Chem. Int. Ed., 49, 6058-6082. 

  19. de St Claire-Deville, H., 1862, Reproduction de la levyne, Comptes rendus hebdomadaires des seances de l'Academie des sciences, 54, 324-327 (in French). 

  20. Delgado, J. A., Uguina, M. A., Gomez, J. M., Ortega, L., 2006, Adsorption equilibrium of carbon dioxide, methane and nitrogen onto Na-and H-mordenite at high pressures, Sep. Purif. Technol., 48, 223-228. 

  21. Densakulprasert, N., Wannatong, L., Chotpattananont, D., Hiamtup, P., Sirivat, A., Schwank, J., 2005, Electrical conductivity of polyaniline/zeolite composites and synergetic interaction with CO, Mater. Sci. Eng. B, 117, 276-282. 

  22. Diaz, E., Munoz, E., Vega, A., Ordonez, S., 2008, Enhancement of the $CO_2$ retention capacity of X zeolites by Na-and Cs-treatments, Chemosphere, 70, 1375-1382. 

  23. Dunne, S. R., 2010, Industrial gas phase adsorptive separations, in: Kulprathipanja, S. (ed.), Zeolites in Industrial Separation and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 273-305. 

  24. Dunne, J. A., Mariwala, R., Rao, M., Sircar, S., Gorte, R. J., Myers, A. L., 1996a, Calorimetric heats of adsorption and adsorption isotherms. 1. $O_2$ , $N_2$ , Ar, $CO_2$ , $CH_4$ , $C_2H_6$ , and $SF_6$ on silicalite, Langmuir, 12, 5888-5895. 

  25. Dunne, J. A., Rao, M., Sircar, S., Gorte, R. J., Myers, A. L., 1996b, Calorimetric heats of adsorption and adsorption isotherms. 2. $O_2$ , $N_2$ , Ar, $CO_2$ , $CH_4$ , $C_2H_6$ , and $SF_6$ on NaX, H-ZSM-5, and Na-ZSM-5 zeolites, Langmuir, 12, 5896-5904. 

  26. El-Kaderi, H. M., Hunt, J. R., Mendoza-Cortes, J. L., Cote, A. P., Taylor, R. E., O'Keeffe, M., Yaghi, O. M., 2007, Designed synthesis of 3D covalent organic frameworks, Science, 316, 268-272. 

  27. Flanigen, E. M., Broach, R. W., Wilson, S. T., 2010, Introduction, in: Kulprathipanja, S. (ed.), Zeolites in Industrial Separation and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 1-26 and therein references. 

  28. Goj, A., Sholl, D. S., Akten, E. D., Kohen, D., 2002, Atomistic simulations of $CO_2$ and $N_2$ adsorption in silica zeolites: The impact of pore size and shape, J. Phys. Chem. B, 106, 8367-8375. 

  29. Gregg, S. J., Sing, K. S. W., 1982, Adsorption, surface area and porosity, 2nd ed., Academic Press, London, 1-303. 

  30. Han, B., Lee, S. H., Shin, C. H., Cox, P. A., Hong, S. B., 2005, Zeolite synthesis using flexible diquaternary alkylammoniumions $(C_nH_{2n+1})_2HN^+(CH_2)_5N^+H(C_nH_2_{n+1})_2$ with n1-5 as structure-directing agents, Chem. Mater., 17, 477-486. 

  31. Hong, S. B., 2008, Use of flexible diquaternary structure-directing agents in zeolite synthesis: Discovery of zeolites TNU-9 and TNU-10 and their catalytic properties, Catal. Surv. Asia, 12, 131-144. 

  32. Hudson, M. R., Queen, W. L., Mason, J. A., Fickel, D. W., Lobo, R. F., Brown, C. M., 2012, Unconventional, highly selective $CO_2$ adsorption in zeolite SSZ-13, J. Am. Chem. Soc., 134, 1970-1973. 

  33. Inui, T., Kang, M., 1997, Reliable procedure for the synthesis of Ni-SAPO-34 as a highly selective catalyst for methanol to ethylene conversion, Appl. Catal. A, 164, 211-223. 

  34. IZA, 2013, http://www.iza-structure.org/databases/. 

  35. Juntgen, H., 1977, New applications for carbonaceous adsorbents, Carbon, 15, 273-283. 

  36. Kim, T. J., Ahn, W. S., Hong, S. B., 1996, Synthesis of zeolite ferrierite in the absence of inorganic cations, Micropor. Mater., 7, 35-40. 

  37. Kim, M. H.,, Choi, S. O., Choo, S. T., 2013, Capability of $CO_2$ on metal-organic frameworks-based porous adsorbents and their challenges to pressure swing adsorption applications, Clean Technol., 19, in press. 

  38. Kim, S. H., Park, M. B., Min, H. K., Hong. S. B., 2009, Zeolite synthesis in the tetraethylammonium-tetramethylammonium mixed-organic additive system, Micropor. Mesopor. Mater., 123, 160-168. 

  39. Krishna, R., van Baten, J. M., 2012, A comparison of the $CO_2$ capture characteristics of zeolites and metal-organic frameworks, Sep. Purif. Technol., 87, 120-126. 

  40. Kulprathipanja, S., James, R. B., 2010, Overview in zeolites adsorptive separation, in: Kulprathipanja, S. (ed.), Zeolites in Industrial Separation and Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 173-202. 

  41. Kuznicki, S. M., 1989, Large-pored crystalline titanium molecular sieve zeolites, U.S. Patent 4,853,202. 

  42. Kuznicki, S. M., Trush, K. A., Allen, F. M., Levine, S. M., Hamil, M. M., Hayhurst, D. T., Mansom, M., 1992, Synthesis and adsorptive properties of titanium silicate molecular sieves, in: Ocelli, M. L. and Robson, H. E. (eds.), Synthesis of Microporous Materials, Molecular Sieves, Vol. 1, Van Nostrand Reinhold, New York, 427-453. 

  43. Lee, S. H., Lee, D. K., Shin, C. H., Paik, W. C., Lee, W. M., Hong, S. B., 2000, Synthesis of zeolite ZSM-57 and its catalytic evaluation for the 1-butene skeletal isomerization and n-octane cracking, J. Catal., 196, 158-166. 

  44. Lee, J. K., Kim, Y. J., Lee, H. J., Kim, S. H., Cho, S. J., Nam, I. S., Hong S. B., 2011, Iron-substituted TNU-9, TNU-10, and IM-5 zeolites and their steam-activated analogs as catalysts for direct $N_2O$ decomposition, J. Catal., 284, 23-33. 

  45. Lee, J. H., Park, M. B., Lee, J. K., Min, H. K., Song, M. K., Hong, S. B., 2010, Synthesis and characterization of ERI-type UZM-12 zeolites and their methanolto-olefin performance, J. Am. Chem. Soc., 132, 12971-12982. 

  46. Lee, S. H., Shin, C. H., Choi, G. J., Park, T. J., Nam, I. S., Han, B., Hong, S. B., 2003, Zeolite synthesis in the presence of flexible diquaternary alkylammonium ions $(C_2H_5)_3N^+(CH_2)_nN^+(C_2H_5)_3$ with n3-10 as structure-directing agents, Micropor. Mesopor. Mater., 60, 237-249. 

  47. Leonard, R. J., 1927, The hydrothermal alteration of certain silicate minerals, Econ. Geol., 22, 18-43. 

  48. Lewis, G. J., Miller, M. A., Moscoso, J. G., Wilson, B. A., Knight, L. M., Wilson, S. T., 2004a, Experimental charge density matching approach to zeolite synthesis, Stud. Surf. Sci. Catal., 154A, 364-372. 

  49. Lewis, G. J., Jan, D. Y., Mezza, B. J., Moscoso, J. G., Miller, M. A., Wilson, B. A., Wilson, S. T., 2004b, UZM-4: A stable Si-rich form of the BPH framework type, Stud. Surf. Sci. Catal., 154A, 118-125. 

  50. Li, S., Falconer, J. L., Noble, R. D., 2004, SAPO-34 membranes for $CO_2$ / $CH_4$ separation, J. Membr. Sci., 241, 121-135. 

  51. Li, J. R., Kuppler, R. J., Zhou, H. C., 2009, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev., 38, 1477-1504. 

  52. Li, Y., Yi, H., Tang, X., Li, F., Yuan, Q., 2013, Adsorption separation of $CO_2$ / $CH_4$ gas mixture on the commercial zeolites at atmosphere pressure, Chem. Eng. J., 229, 50-56. 

  53. Liu, J., Thallapally, P. K., McGrail, B. P., Brown, D. R., Liu, J., 2012, Progress in adsorption-based $CO_2$ capture by metal-organic frameworks, Chem. Soc. Rev., 41, 2308-2322. 

  54. Lok, B. M., Messina, C. A., Patton, R. L., Gajek, R. T., Cannan, T. R., Flanigen, E. M., 1984, Silicoaluminophosphate molecular sieves: Another new class of microporous crystalline inorganic solids, J. Am. Chem. Soc., 106, 6092-6093. 

  55. McBain, J. W., 1932, The Sorption of Gases and Vapors by Solids, G. Routledge & Sons, London, 167-176. 

  56. McEwen, J., Hayman, J. D., Yazaydin, A. O., 2013, A comparative study of $CO_2$ , $CH_4$ and $N_2$ adsorption in ZIF-8, zeolite-13X and BPL activated carbon, Chem. Phys., 412, 72-76. 

  57. Mertens, M., Stromaier, K. G., 2004, Process for manufacture of molecular sieves, U.S. Patent 6,773,688. 

  58. Miller, M. A., Lewis, G. J., Moscoso. J. G., Koster, S., Modica, F., Gatter, M. G., Nemeth, L. T., 2007, Synthesis and catalytic activity of UZM-12, Stud. Surf. Sci. Catal., 170, 487-492. 

  59. Millward, A. R., Yaghi, O. M., 2005, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, J. Am. Chem. Soc., 127, 17998-17999. 

  60. Milton, R. M., 1989, Molecular sieve science and technology: a historical perspective, in: Occelli, M. L., Robson, H. E. (eds.), Zeolite Synthesis, ACS Symposium Series 398, American Chemical Society, Washington D.C., 1-10. 

  61. Miyamoto, M., Fujioka, Y., Yogo, K., 2012, Pure silica CHA type zeolite for $CO_2$ separation using pressure swing adsorption at high pressure, J. Mater. Chem., 22, 20186-20189. 

  62. Muller, M., Harvey, G., Prins, R., 2000, Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with $SiCl_4$ by $^1H$ , $^{29}Si$ and $^{27}Al$ MAS NMR, Micropor. Mesopor. Mater., 34, 135-147. 

  63. Palomino, M., Corma, A., Jorda, J. L., Rey, F., Valencia, S., 2012, Zeolite rho: A highly selective adsorbent for $CO_2$ / $CH_4$ separation induced by a structural phase modification, Chem. Commun., 48, 215-217. 

  64. Park, J. W., Lee, J. Y., Kim, K. S., Hong, S. B., Seo, G., 2008, Effects of cage shape and size of 8-membered ring molecular sieves on their deactivation in methanol-to-olefin (MTO) reactions, Appl. Catal. A, 339, 36-44. 

  65. Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M., Yaghi, O. M., 2006, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, PNAS, 103, 10186-10191. 

  66. Pauling, L., 1930, The structure of some sodium and calcium aluminosilicates, PNAS, 16, 453-459. 

  67. Pawlesa, J., Zukal, A., Cejka, J., 2007, Synthesis and adsorption investigations of zeolites MCM-22 and MCM-49 modified by alkali metal cations, Adsorption, 13, 257-265. 

  68. Petrovic, I., Navrotsky, A., 1997, Thermochemistry of Na-faujasites with varying Si/Al ratios, Micropor. Mater., 9, 1-12. 

  69. Phan, A., Doonan, C. J., Uribe-Romo, F. J., Knobler, C. B., O'Keeffe, M., Yaghi, O. M., 2010, Synthesis, structure and carbon dioxide capture properties of zeolitic imidazolate frameworks, Acc. Chem. Res., 43, 58-67. 

  70. Palomino, M., Corma, A., Jorda, J. L., Rey, F., Valencia, S., 2012, Zeolite Rho: A highly selective adsorbent for $CO_2$ / $CH_4$ separation induced by a structural phase modification, Chem. Commun., 48, 215-217. 

  71. Palomino, M., Corma, A., Rey, F., Valencia, S., 2010, New insights on $CO_2$ -methane separation using LTA zeolites with different Si/Al ratios and a first comparison with MOFs, Langmuir, 26, 1910-1917. 

  72. Pamba, M., Maurin, G., Devautour, S., Vanderschueren, J., Giuntini, J. C., Renzo, F. D., Hamidi, F., 2000, Influence of framework Si/Al ratio on the $Na^+$ /mordenite interaction energy, Phys. Chem. Chem. Phys., 2, 2027-2031 

  73. Plevert, J., Yamamoto, K., Chiari, G., Tatsumi, T., 1999, UTM-1: An eight-membered ring zeolite with the basic building chains of the MFI topology, J. Phys. Chem. B, 8647-8649. 

  74. Portilla, M. T., Llopis, F. J., Martinez, C., Valencia, S., Corma, A., 2011, Structure-reactivity relationship for aromatics transalkylation and isomerization process with TNU-9, MCM-22 and ZSM-5 zeolites, and their industrial implications, Appl. Catal. A, 393, 257-268. 

  75. Prakash, A. M., Hartmann, M. H., Kevan, L., 1998, SAPO-35 molecular sieve: Synthesis, characterization and adsorbate interactions of Cu(II) in CuH-SAPO-35, Chem. Mater., 10, 932-941. 

  76. Rachwalik, R., Olejniczak, Z., Sulikowski, B., 2005, Dealumination of ferrierite type zeolite: Physicochemical and catalytic properties, Catal. Today, 101, 147-154. 

  77. Reed, T. B., Breck, D. W., 1956, Crystalline zeolites. II. Crystal structure of synthetic zeolite, Type A, J. Am. Chem. Soc., 78, 5972-5977. 

  78. Robson, H. E., Shoemaker, D. P., Ogilvie, R. A., Manor, P. C., 1973, Synthesis and crystal structure of zeolite Rho-A new zeolite related to Linde Type A, Adv. Chem., 121, 106-115. 

  79. Schimmel, H. G., Kearley, G. J., Nijkamp, M. G., Visserl, C. T., de Jong, K. P., Mulder, F. M., 2003, Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals, Chem. Eur. J., 9, 4764-4770. 

  80. Schlenker, J. L., Higgins, J. B., Valyocsik, E. W., 1990, The framework topology of ZSM-57: A new synthetic zeolite, Zeolites, 10, 293-296. 

  81. Sing, K. S. W., 1982, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 54, 2201-2218. 

  82. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., Siemieniewska, T., 1985, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57, 603-619. 

  83. Sircar, S., 2006, Basic research needs for design of adsorptive gas separation processes, Ind. Eng. Chem. Res., 45, 5435-5448. 

  84. Siriwardane, R. V., Shen, M. S., Fisher, E. P., 2003, Adsorption of $CO_2$ , $N_2$ , and $O_2$ on natural zeolites, Energy Fuels, 17, 571-576. 

  85. Siriwardane, R. V., Shen, M. S., Fisher, E. P., Poston, J. A., 2001, Adsorption of $CO_2$ on molecular sieves and activated carbon, Energy Fuels, 15, 279-284. 

  86. Stewart, A., Johnson, D. W., Shannon, M. D., 1988, Synthesis and characterisation of crystalline aluminosilicate sigma-1, Stud. Surf. Sci. Catal., 37, 57-64. 

  87. Suzuki, M., 1994, Activated carbon fiber: Fundamentals and applications, Carbon, 32, 577-586. 

  88. Tagliabue, M., Farrusseng, D., Valencia, S., Aguado, S., Ravon, U., Rizzo, C., Corma, A., Mirodatos, C., 2009, Natural gas treating by selective adsorption: material science and chemical engineering interplay, Chem. Eng. J., 155, 553-566. 

  89. Taramasso, M., Perego, G., Notari, B., 1983, Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides, U.S. Patent 4,410,501A. 

  90. Taylor, W. H., 1930, The crystal structure of analcite $(NaAlSi_2O_6{\cdot}H_2O)$ , Z. Kristallogr., 74, 1-19 (in German). 

  91. Thomas, B., Ramu, V. G., Gopinath, S., George, J., Kurian, M., Laurent, G., Drisko, G. L., Sugunan, S., 2011, Catalytic acetalization of carbonyl compounds over cation ( $Ce^{3+}$ , $Fe^{3+}$ and $Al^{3+}$ ) exchanged montmorillonites and $Ce^{3+}$ -exchanged Y zeolites, Appl. Clay Sci., 53, 227-235. 

  92. UNEP (the United Nations Environment Programme), 2013, The emissions gap report 2013: A UNEP synthesis report, Nairobi, Kenya. 

  93. Walton, K. S., Abney, M. B., LeVan, M. D., 2006, $CO_2$ Adsorption in Y and X zeolites modified by alkali metal cation exchange, Micropor. Mesopor. Mater., 91, 78-84. 

  94. Wang, Q., Luo, J., Zhong, Z., Borgna, A., 2011, $CO_2$ capture by solid adsorbents and their applications: Current status and new trends, Energy Environ. Sci., 4, 42-55. 

  95. Wei, X., Smirniotis, P. G., 2006, Development and characterization of mesoporosity in ZSM-12 by desilication, Micropor. Mesopor. Mater., 97, 97-106. 

  96. Weigel, O., Steinhoff, E., 1925, Adsorption of organic liquid vapors by chabazite, Z. Kristallogr., 61, 125-154 (in German). 

  97. Wilson, S. T., Broach, R. W., Blackwell, C. S., Bateman, C. A., McGuire, N. K., Kirchner, R. M., 1999, Synthesis, characterization and structure of SAPO-56, a member of the ABC double-six-ring family of materials with stacking sequence AABBCCBB, Micropor. Mesopor. Mater., 28, 125-197. 

  98. Wilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R., Flanigen, E. M., 1982, Aluminophosphate molecular sieves: A new class of microporous crystalline inorganic solids, J. Am. Chem. Soc., 104, 1146-1147. 

  99. Xu, X., Zhao, X., Sun, L., Liu, X., 2008, Adsorption separation of carbon dioxide, methane, and nitrogen on H ${\beta}$ and Na-exchanged ${\beta}$ -zeolite, J. Natural Gas Chem., 17, 391-396. 

  100. Yaghi, O. M., Li, G., Li, H., 1995, Selective binding and removal of guests in a microporous metal-organic framework, Nature, 378, 703-706. 

  101. Yamamoto, K., Plevert, J., Uneme, M., Tatsumi, T., 2002, Synthesis, characterization and catalysis of UTM-1: An MTF-type zeolite composed of the same building unit as MFI-type zeolites, Micropor. Mesopor. Mater., 55, 81-91. 

  102. Yang, R. T., 2003, Adsorbents: Fundamental and Applications, John Wiley & Sons, Hoboken, 1-410. 

  103. Zones, S. I., 1985, Zeolite SSZ-13 and its method of preparation, U.S. Patent 4,544,538. 

  104. Zukal, A., Mayerova, J., Kubu, 2010, Adsorption of carbon dioxide on high-silica zeolites with different framework topology, Top. Catal., 53, 136-1366. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로