$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Cloning, Expression, and Characterization of a Thermostable GH51 ${\\alpha}-\\small{L}$-Arabinofuranosidase from Paenibacillus sp. DG-22 원문보기

Journal of microbiology and biotechnology, v.24 no.2, 2014년, pp.236 - 244  

Lee, Sun Hwa (Department of Biotechnology, Dongguk University) ,  Lee, Yong-Eok (Department of Biotechnology, Dongguk University)

Abstract AI-Helper 아이콘AI-Helper

The gene encoding ${\alpha}-\small{L}$-arabinofuranosidase (AFase) from Paenibacillus sp. DG-22 was cloned, sequenced, and expressed in Escherichia coli. The AFase gene (abfA) comprises a 1,509 bp open reading frame encoding 502 amino acids with a molecular mass of 56,520 daltons. The ded...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

이론/모형

  • DNA sequencing was conducted at the Genotech DNA sequencing facility (Daejeon, Korea) by automated sequencing using the dideoxynucleotide chain termination method. The nucleotide sequence was analyzed using the National Center for Biotechnology Information (NCBI) Open Reading Frame (ORF) Finder tool.
  • DNA sequencing was conducted at the Genotech DNA sequencing facility (Daejeon, Korea) by automated sequencing using the dideoxynucleotide chain termination method. The nucleotide sequence was analyzed using the National Center for Biotechnology Information (NCBI) Open Reading Frame (ORF) Finder tool. The signal peptide in the deduced amino acid sequence was predicted by the SignalP 4.
  • The protein content was determined by the Bradford method [6] with Protein Assay reagent (Bio-Rad) using bovine serum albumin as the standard. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was performed on a 15% running gel [17] and resolved proteins were visualized by staining with Coomassie Brilliant Blue R-250 (Sigma).
  • aReducing sugar was measured using the DNS method [23].
본문요약 정보가 도움이 되었나요?

참고문헌 (37)

  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. 

  2. Alvira P, Negro MJ, Ballesteros M. 2011. Effect of endoxylanase and $\alpha$ -L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresour. Technol. 102: 4552-4558. 

  3. Arti D, Park JM, Jung TY, Song HN, Jang MU, Han NS, et al. 2012. Structural analysis of $\alpha$ -L-arabinofuranosidase from Thermotoga maritima reveals characteristics for thermostability and substrate specificity. J. Microbiol. Biotechnol. 22: 1724- 1730. 

  4. Bastawde KB. 1992. Xylan structure, microbial xylanases, and their mode of action. World J. Microbiol. Biotechnol. 8: 353-368. 

  5. Biely P. 1985. Microbial xylanolytic systems. Trends Biotechnol. 3: 286-290. 

  6. Bradford M M. 1976. Arapid and s ensitive m ethod for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-256. 

  7. Canakei S, Belduz AO, Saha BC, Yasar A, Ayaz FA, Yayli N. 2007. Purification and characterization of a highly thermostable $\alpha$ -L-arabinofuranosidase from Geobacillus caldoxylolyticus TK4. Appl. Microbiol. Biotechnol. 75: 813-820. 

  8. Debeche T, Cummings N, Connerton I, Debeire P, O'Donohue MJ. 2000. Genetic and biochemical characterization of a highly thermostable $\alpha$ -L-arabinofuranosidase from Thermobacillus xylanilyticus. Appl. Environ. Microbiol. 66: 1734-1736. 

  9. Degrassi G, Vindigni A, Venturi V. 2003. Thermostable $\alpha$ -arabinofuranosidase from xylanolytic Bacillus pumilus: purification and characterization. J. Biotechnol. 101: 69-79. 

  10. Gilead S, Shoham Y. 1995. Purification and characterization of $\alpha$ -L-arabinofuranosidase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 61: 170-174. 

  11. Gouet P, Robert X, Courcelle E. 2003. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31: 3320- 3323. 

  12. Henrissat B, Bairoch A. 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316: 695-696. 

  13. Hovel K, Shallom D, Niefind K, Belakhov V, Shoham G, Baasov T, et al. 2003. Crystal structure and snapshots along the reaction pathway of a family 51 $\alpha$ -L-arabinofuranosidase. EMBO J. 22: 4922-4932. 

  14. Kaji A. 1984. L-Arabinosidases. Adv. Carbohydr. Chem. Biochem. 42: 383-394. 

  15. Knob A, Carmona EC. 2010. Purification and characterization of two extracellular xylanases from Penicillium sclerotiorum: a novel acidophilic xylanase. Appl. Biochem. Biotechnol. 162: 429-443. 

  16. Kulkarni N, Shendye A, Rao M. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456. 

  17. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. 

  18. Lee TH, Lee YE. 2007. Cloning, sequencing and expression of the gene encoding a thermostable $\beta$ -xylosidase from Paenibacillus sp. DG-22. J. Life Sci. 17: 1197-1203. 

  19. Lee TH, L im P O, L ee YE. 2007 . Cloning, characterization, and expression of xylanase A gene from Paenibacillus sp. DG-22 in Escherichia coli. J. Microbiol. Biotechnol. 17: 29-36. 

  20. Lee YE. 2004. Isolation and characterization of thermostable xylanase producing Paenibacillus sp. DG-22. Kor. J. Microbiol. Biotechnol. 32: 22-28. 

  21. Lee YE, Lim PO. 2004. Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG-22. J. Microbiol. Biotechnol. 14: 1014-1021. 

  22. Marmur J. 1961. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3: 208-218. 

  23. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426-428. 

  24. Morana A, Paris O, Maurelli L, Rossi M, Cannio R. 2007. Gene cloning and expression in Escherichia coli of a bifunctional $\beta$ -D-xylosidase/ $\alpha$ -L-arabinosidase from Sulfolobus solfataricus involved in xylan degradation. Extremophiles 11: 123-132. 

  25. Numan MT, Bhosle NB. 2006. $\alpha$ -L-Arabinofuranosidase: the potential applications in biotechnology. J. Ind. Microbiol. Biotechnol. 33: 247-260. 

  26. Paes G, Skov LK, O'Donohue MJ, Remond C, Kastrup JS, Gajhede M, Mirza O. 2008. The structure of the complex between a branched pentasaccharide and Thermobacillus xylanilyticus GH-51 arabinofuranosidase reveals xylan-binding determinants and induced fit. Biochemistry 47: 7441-7451. 

  27. Pei J, Shao W. 2008. Purification and characterization of an extracellular $\alpha$ -L-arabinosidase from a novel isolate Bacillus pumilus ARA and its over-expression in Escherichia coli. Appl. Microbiol. Biotechnol. 78: 115-121. 

  28. Petersen TN, Brunak S, Heijne G, Nielsen H. 2011. SignalP 4,0: discriminating signal peptides from transmembrane regions. Nat. Methods 8: 785-786. 

  29. Raweesri P, Riangrungrojana P, Pinphanichakarn P. 2008. $\alpha$ - L-Arabinofuranosidase from Streptomyces sp. PC22: purification, characterization and its synergistic action with xylanolytic enzymes in the degradation of xylan and agricultural residues. Bioresour. Technol. 99: 8981-8986. 

  30. Saha BC. 2000. $\alpha$ -L-Arabinofuranosidase: biochemistry, molecular biology and application in biotechnology. Biotechnol. Adv. 18: 403-423. 

  31. Shi P, Chen X, Meng K, Huang H, Bai Y, Luo H, et al. 2013. Distinct actions by Paenibacillus sp. strain E18 $\alpha$ -Larabinofuranosidases and xylanase in xylan degradation. Appl. Environ. Microbiol. 79: 1990-1995. 

  32. Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7: 539 

  33. Souza TACB, Santos CR, Souza AR, Oldiges DP, Ruller R, Prade RA, et al. 2011. Structure of a novel thermostable GH51 $\alpha$ -L-arabinofuranosidase from Thermotoga petrophila RKU-1. Protein Sci. 20: 1632-1637. 

  34. Sunna A, Antranikian G. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67. 

  35. Taylor EJ, Smith NL, Turkenburg JP, D'Souza S, Gilbert HJ, Davies GJ. 2006. Structural insight into the ligand specificity of a thermostable family 51 arabinofuranosidase, Araf51, from Clostridium thermocellum. Biochem. J. 395: 31-37. 

  36. Ward OP, Moo-Young M. 1989. Enzymatic degradation of cell wall and related plant polysaccharides. Crit. Rev. Biotechnol. 8: 237-274. 

  37. Wiegel VM, Lorenz WW. 2000. Cloning, sequencing, and characterization of the bifunctional xylosidase-arabinosidase from the anaerobic thermophile Thermoanaerobacter ethanolicus. Gene 247: 137-143. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로