$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

온실용 피복재 및 보온재의 관류열전달계수 측정 및 비교
Measurement and Comparison of Overall Heat Transfer Coefficients for Greenhouse Covering Materials with Thermal Screens 원문보기

한국농공학회논문집 = Journal of the Korean Society of Agricultural Engineers, v.56 no.4, 2014년, pp.41 - 51  

소레이멘 디옵 (Department of Agricultural Engineering, Kyungpook National University) ,  이종원 (Department of Agricultural Engineering, Kyungpook National University) ,  이현우 (Department of Agricultural Engineering, Kyungpook National University)

초록
AI-Helper 아이콘AI-Helper

천공복사를 구현할 수 있는 관류열전달계수 측정용 실내실험장치를 제작하고 국내에서 사용되고 있는 온실 피복재보온재의 관류열전달계수를 측정하여 실외실험에서 측정된 결과와 비교하여 타당성을 평가하였다. 외부피복은 0.1 mm 두께의 폴리에틸렌 필름을 사용하여 일중 및 이중피복으로 처리하였다. 이중외부피복조건의 경우 4가지 종류의 보온재를 처리하여 총 6가지 피복처리에 대하여 실험을 실시하였다. 모든 피복처리조건에 대하여 야간복사 유무에 따른 관류열전달계수 측정실험이 수행되었다. 천공복사의 유무에 따라 온실피복재의 관류열전달계수의 변화 경향이 크게 차이가 있었기 때문에 실내실험을 통해 관류열전달계수를 측정하기 위해서는 반드시 실제의 천공복사를 구현할 수 있는 실험장치가 필요할 것으로 판단된다. 실내 실험결과와 실외 실험결과가 비교적 잘 일치하였으며 실내실험장치를 이용하여 관류열전달계수를 측정하는 것이 타당성이 있음을 확인할 수 있었다. 천공복사 유무에 따른 관류열전달계수의 차이는 핫박스 내외부의 온도차이가 증가함에 따라 감소하는 것으로 나타났다.

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • U values were also similar under simulated night sky radiation: under outdoor conditions the coefficient was 1 %, 3 %, and 4 % higher than that measured in the indoor experiment for the 1 L, 2 L, and 3 LM treatments, respectively; values were equal for 4 LW and 7 % lower for 4 LM. Because the differences between the experiments were small, the experimental device used in this study can be considered reliable for measuring U values, and overall heat transfer coefficients can be obtained in a laboratory setting using a night sky radiation simulator. These results demonstrate the feasibility of measuring the U values of greenhouse covering materials and thermal screens with indoor experiments.
  • In terms of quantity of heat loss, differences in U values was greater for covering treatments with higher U values, and decreased as the temperature difference between the inside and outside of the hot box increased. Because the differences between the inside and outside experiments were small, the experimental device used in this study can be considered reliable for measuring U values, and overall heat transfer coefficients can be obtained in a laboratory setting using a night sky radiation simulator. These results demonstrate the feasibility of measuring the U values of greenhouse covering materials and thermal screens with indoor experiments.
  • Four combinations of thermal screens were tested in the two-layer covering treatments: (1) one layer of multilayer screen; (2) two layers of white polyester; (3) one layer of white fabric polyester and one layer of white polyester; and (4) two layers of multilayer screen. Experiments were conducted to determine U values for each of the four treatments with and without simulated night sky radiation. The temperature in the hot box was set to 10°C, 20°C, 30°C, 40°C, and 50°C.
  • Table 2 lists the test materials and treatment conditions used to determine U values in indoor experiments. Experiments were conducted using 12 treatment conditions consisting of various combinations of covering materials and thermal screens and the presence or absence of simulated night sky radiation. One-or two-layer coverings were created with 0.
  • 1-mm-thick PE film. Four combinations of thermal screens were tested in the two-layer covering treatments: (1) one layer of multilayer screen; (2) two layers of white polyester; (3) one layer of white fabric polyester and one layer of white polyester; and (4) two layers of multilayer screen. Experiments were conducted to determine U values for each of the four treatments with and without simulated night sky radiation.
  • 5 shows the location of surface and air temperature sensors. Heat loss through the hot box walls was calculated by measuring the inner and outer surface temperature of three walls using a UE-1530 sensor (USEEM, Korea) equipped with a ZFRM data logger (USEEM, Korea). External wind speed was measured every 10 min, outside and inside the indoor cold chamber, with a Kestrel 4500 wind gauge (Nielsen-Kellerman, USA).
  • In this research, U values of greenhouse covering materials with thermal screens commonly used in Korea were investigated using a hot box under ambient outdoor climatic conditions and in a laboratory system in which night sky radiation was simulated. U values measured at high wind speeds in outdoor experiments were greater than those measured at low wind speeds for all treatments.
  • Many researchers show the relationship of the overall heat transfer coefficient and the wind speed as a linear relationship (Hanan, 1998). The results are analyzed by inducing the linear formula in this study. The variation of U values according to the temperature difference between the inside and outside of the hot box increases as the wind speed increases.
  • This study is conducted by producing an indoor experimental apparatus for measuring the overall heat transfer coefficient with which the actual sky temperature can be implemented and measuring greenhouse coverings and thermal screens available in Korea to compare the results with the measured results in the outdoor experiment and to assess their appropriateness.
  • Temperatures at various locations inside and outside the hot box were measured using six HOBO temperature sensors (Onset, USA), and average values were calculated. Two additional temperature sensors were installed outside the hot box and their values were averaged to increase the accuracy of the measurements. The temperature at each compartment of the experiment was set via a connection to an on–off controller.

대상 데이터

  • The temperature at each compartment of the experiment was set via a connection to an on–off controller. Experiments were carried out from November 2011 to April 2013.
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. Abdel-Ghany A.M., and T. Kozai. 2006. On the determination of the overall heat transmission coefficient and soil heat flux for a fog cooled, naturally ventilated greenhouse: analysis of radiation and convection heat transfer. Energy Conversion and Management 47: 2612-2628. 

  2. Albright, L.D., I. Seginer, L.S. Marsh, and A. Oko, 1985. In situ thermal calibration of unventilated greenhouse. J. agric. Engng Res. 31: 265-281. 

  3. Bailey, B. J., and Z. S. Chalabi, 1994. Improving the cost effectiveness of greenhouse climate control. Computers and Electronics in Agriculture 10: 203-214. 

  4. Baille, A., J. C. Lopez, S. Bonachela, M. M. Gonzalez-Real, and J. I. Montero, 2006. Night energy balance in a heated low-cost plastic greenhouse. Agricultural and Forest Meteorology 137: 107-118. 

  5. Diop, S., 2013. Development of measuring system of the overall heat transfer coefficient of greenhouse covering materials with thermal screens. Ph.D. diss., Kyungpook National University. 

  6. Diop, S., J. W. Lee, W. H. Na, and H. W. Lee, 2012. Overall heat transfer coefficient measurement of covering materials with thermal screens for greenhouse using the hot box method. Journal of the Korean Society of Agriculture Engineers 54(5): 1-7. 

  7. Duffie J.A and W.A. Beckman, 1981. Solar engineering of thermal processes. Wiley Interscience Publication, New York. 

  8. Feuilloley, P., and G. Issanchou, 1996. Greenhouse covering materials measurement and modeling of thermal properties using the hot box method, and condensation effects. J. agric. Engng Res. 65: 129-142. 

  9. Garzoli, K.V., and J. Blackwell, 1987. An analysis of the nocturnal heat loss from a double skin plastic greenhouse. J. agri. Engng Res. 36: 75-85. 

  10. Geoola, F., Y. Kashti, A. Levi, and R. Brickman, 2009. A study of the overall heat transfer coefficient of greenhouse cladding materials with thermal screen using the hot box method. Polymer Testing 28: 470-474. 

  11. Hanan, J.J., 1998. Greenhouse advanced technology for protected horticulture. CRC Press, New York. 

  12. Lee, H. W., J. W. Lee, and S. Diop, 2013. Measuring system of the overall heat transfer coefficient of greenhouse covering materials with thermal. Magazine of the Korean Society of Agriculture Engineers 55(4): 50-58 (in Korean). 

  13. Lee, H. W., J. W. Lee, S. Diop, and O. H. Na, 2014. Measurement of overall heat transfer coefficient of covering material with thermal screens for plastic greenhouse. Acta Hort. 1037: 219-223. 

  14. Japan Greenhouse Horticulture Association (JGHA), 1994. Greenhouse horticulture handbook, 170-173. Tokyo, Japan (in Japanese). 

  15. Kim, M.G., S. W. Nam, W. M. Suh, Y. C. Yoon, S. G. Lee, and H. W. Lee, 2000. Agricultural structural engineering. Hyangmunsa, Korea (in Korean). 

  16. Kim, Y.B., S. Y. Lee, and B. R. Jeong, 2009. Analysis of the insulation effectiveness of the thermal insulator by the installation methods. Journal of Bio-Environmental Control 18(4): 332-340 (in Korean). 

  17. Kittas, C., 1994. Determination du coefficient global de transmission de chaleur a travers la paroi d'une serre. [Overall heat transfer coefficient of the greenhouse cover]. Agricultural and Meteorolgy 69: 205-221. 

  18. Max, J.F.J., G. Reisinger, T. Hofmann, J. Hinken, H.J. Tantau, A. Ulbrich, S. Lambrecht, B.V. Elsner, and U. Schurr, 2012. Glass-film-combination: Opto-physical properties and energy saving potential of a novel greenhouse glazing system. Energy and Buildings 50: 298-307. 

  19. Minagawa, H., and K. Tachibana, 1982. The overall heat transfer of greenhouses covered with PE and PVC single layer-The heat insulation efficiency of greenhouses and their covering materials (1). J. Agr. Met. 38(1): 15-22 (in Japanese). 

  20. Ministry of Food, Agriculture, Forestry, and Fisheries (MIFAFF), 2013. Status of vegetable production in South Korea, Korea (in Korean). 

  21. Na, W.H., J. W. Lee, S. Diop, and H. W. Lee, 2013. Calculation of night sky temperature according to cloudiness in Daegu. Current Research on Agriculture and Life Sciences 31(1): 40-46 (in Korean). 

  22. Nijskens, J., J. Deltour, S. Coutisse, and A. Nisen, 1984. Heat transfer through covering materials of greenhouses. Agricultural and Forest Meteorology, 33: 193-214. 

  23. Papadakis, G., D. Briassoulis, G.S Mugnozza, G. Vox, P. Feuilloley J.A Stoffers, 2000. Radiometric and thermal properties of, and testing in methods for, greenhouse covering materials. Journal of Agricultural Engineering Research 77(1): 7-38. 

  24. Rural Development Administration (RDA), 2008. Energy saving technology for greenhouse, 1-26. Korea (in Korean). 

  25. Seginer, I., D. Kantz, U.M. Peiper, and N. Levav, 1988. Transfer coefficients of several polyethylene greenhouse covers. J. agri. Engng Res. 39: 19 -37. 

  26. Ursula, E., and D. Antoine, 2011. Photovoltaic-thermal collectors for night radiative cooling of buildings. Solar Energy 85(7): 1322-1335. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로