$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

Abstract

Commercially available extracellular matrix (ECM) hydrogel-coated culture plates have been used to study the relationship between the ECM microenvironment and stem cell behavior. However, it is unclear whether ECM-coated dishes mimic the natural ECM microenvironment because the architecture of the ECM is constructed of randomly distributed fibers. The purpose of this study was the production and confirmation of human engineered cell lines stably expressing large ECM proteins such as collagen I/II and fibronectin. First, large (over 10 kb) ECM vectors encoding human collagen I/II and fibronectin were constructed and the circular vectors were linearized. Second, the linear ECM vectors were introduced into immortalized human embryonic kidney cells using various transfection methods. The polyethylenimine and liposome methods showed higher efficiencies than electroporation for transfection of these large vectors. Third, human ECM engineered cells were established by stable integration of the vector into the genomic DNA and resulted in stable overexpression of mRNA and proteins. In summary, human engineered cell lines stably expressing large ECM proteins such as human collagen I/II and fibronectin were successfully prepared, and secretion of the ECM components into the surrounding environment was confirmed by immunocytochemistry. Thus, human ECM engineered cells naturally secreting ECM components could be valuable for studying the relationship between the native ECM microenvironment and stem cell behavior.

참고문헌 (25)

  1. Bosnakovski, D., M. Mizuno, G. Kim, S. Takagi, M. Okumura, and T. Fujinaga. 2006. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: Influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnology and Bioengineering 93: 1152-1163. 
  2. Adams, J.C., and F.M. Watt. 1993. Regulation of development and differentiation by the extracellular matrix. Development 117: 1183-1198. 
  3. Bloquel, C., E. Fabre, M.F. Bureau, and D. Scherman. 2004. Plasmid DNA electrotransfer for intracellular and secreted proteins expression: New methodological developments and applications. The Journal of Gene Medicine 6(Suppl 1): S11-S23. 
  4. Chen, Z.Y., S.R. Yant, C.Y. He, L. Meuse, S. Shen, and M.A. Kay. 2001. Linear DNAs concatemerize in vivo and result in sustained transgene expression in mouse liver. Molecular Therapy 3: 403-410. 
  5. Campeau, P., P. Chapdelaine, S. Seigneurin-Venin, B. Massie, and J.P. Tremblay. 2001. Transfection of large plasmids in primary human myoblasts. Gene Therapy 8: 1387-1394. 
  6. Cha, M.H., S.H. Do, G.R. Park, P. Du, K.C. Han, D.K. Han, and K. Park. 2013. Induction of re-differentiation of passaged rat chondrocytes using a naturally obtained extracellular matrix microenvironment. Tissue Engineering Part A 19: 978-988. 
  7. Chancham, P., and J.A. Hughes. 2001. Relationship between plasmid DNA topological forms and in vitro transfection. Journal of Liposome Research 11: 139-152. 
  8. Cherng, J.Y., N.M. Schuurmans-Nieuwenbroek, W. Jiskoot, H. Talsma, N.J. Zuidam, W.E. Hennink, and D.J. Crommelin. 1999. Effect of DNA topology on the transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmid complexes. Journal of Controlled Release 60: 343-353. 
  9. Dequach, J.A., V. Mezzano, A. Miglani, S. Lange, G.M. Keller, F. Sheikh, and K.L. Christman. 2010. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS ONE 5: e13039. 
  10. Everitt, E.A., A.B. Malik, and B. Hendey. 1996. Fibronectin enhances the migration rate of human neutrophils in vitro. Journal of Leukocyte Biology 60: 199-206. 
  11. Hakala, H., K. Rajala, M. Ojala, S. Panula, S. Areva, M. Kellomaki, R. Suuronen, and H. Skottman. 2009. Comparison of biomaterials and extracellular matrices as a culture platform for multiple, independently derived human embryonic stem cell lines. Tissue Engineering Part A 15: 1775-1785. 
  12. Krassowska, W., and P.D. Filev. 2007. Modeling electroporation in a single cell. Biophysical Journal 92: 404-417. 
  13. Hesse, E., T.E. Hefferan, J.E. Tarara, C. Haasper, R. Meller, C. Krettek, L. Lu, and M.J. Yaszemski. 2010. Collagen type I hydrogel allows migration, proliferation, and osteogenic differentiation of rat bone marrow stromal cells. Journal of Biomedical Materials Research, Part A 94: 442-449. 
  14. Kern, B., J. Shen, M. Starbuck, and G. Karsenty. 2001. Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes. Journal of Biological Chemistry 276: 7101-7107. 
  15. Koochekpour, S., A. Merzak, and G.J. Pilkington. 1995. Extracellular matrix proteins inhibit proliferation, upregulate migration and induce morphological changes in human glioma cell lines. European Journal of Cancer 31A: 375-380. 
  16. Pankov, R., and K.M. Yamada. 2002. Fibronectin at a glance. Journal of Cell Science 115: 3861-3863. 
  17. Prowse, A.B., F. Chong, P.P. Gray, and T.P. Munro. 2011. Stem cell integrins: Implications for ex vivo culture and cellular therapies. Stem Cell Research 6: 1-12. 
  18. Singh, P., and J.E. Schwarzbauer. 2012. Fibronectin and stem cell differentiation - lessons from chondrogenesis. Journal of Cell Science 125: 3703-3712. 
  19. Soteriou, D., B. Iskender, A. Byron, J.D. Humphries, S. Borg-Bartolo, M.C. Haddock, M.A. Baxter, D. Knight, M.J. Humphries, and S.J. Kimber. 2013. Comparative proteomic analysis of supportive and unsupportive extracellular matrix substrates for human embryonic stem cell maintenance. Journal of Biological Chemistry 288: 18716-18731. 
  20. Stuchbury, G., and G. Munch. 2010. Optimizing the generation of stable neuronal cell lines via pre-transfection restriction enzyme digestion of plasmid DNA. Cytotechnology 62: 189-194. 
  21. Xu, C., M.S. Inokuma, J. Denham, K. Golds, P. Kundu, J.D. Gold, and M.K. Carpenter. 2001. Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology 19: 971-974. 
  22. Tros De Ilarduya, C., Y. Sun, and N. Duzgunes. 2010. Gene delivery by lipoplexes and polyplexes. European Journal of Pharmaceutical Sciences 40: 159-170. 
  23. Uygun, B.E., A. Soto-Gutierrez, H. Yagi, M.L. Izamis, M.A. Guzzardi, C. Shulman, J. Milwid, N. Kobayashi, A. Tilles, F. Berthiaume, M. Hertl, Y. Nahmias, M.L. Yarmush, and K. Uygun. 2010. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nature Medicine 16: 814-820. 
  24. Xi, J., Y. Wang, P. Zhang, L. He, X. Nan, W. Yue, and X. Pei. 2010. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells. PLoS ONE 5: e14457. 
  25. Zou, C., B.K. Chou, S.N. Dowey, K. Tsang, X. Huang, C.F. Liu, C. Smith, J. Yen, P. Mali, Y.A. Zhang, L. Cheng, and Z. Ye. 2012. Efficient derivation and genetic modifications of human pluripotent stem cells on engineered human feeder cell lines. Stem Cells and Development 21: 2298-2311. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

DOI 인용 스타일