$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

한반도 남동부 제4기 단층의 대자율이방성(AMS): 단층의 운동감각과 고응력장 해석
Anisotropy of Magnetic Susceptibility (AMS) of the Quaternary Faults, SE Korea: Application to the Determination of Fault Slip Sense and Paleo-stress Field 원문보기

암석학회지 = The journal of the petrological society of korea, v.23 no.2, 2014년, pp.75 - 103  

조형성 (부산대학교 지질환경과학과) ,  김민철 (부산대학교 지질환경과학과) ,  김현정 (부산대학교 지질환경과학과) ,  손문 (부산대학교 지질환경과학과)

초록
AI-Helper 아이콘AI-Helper

한반도 남동부 일원에는 주요 지질구조선(양산단층대, 울산단층, 연일구조선, 오천단층계 등)을 따라 제4기 단층들이 도처에 분포하고 있으며, 이들의 기하와 운동학적 특징은 한반도의 제4기 지각변형사와 현생응력상태 등을 이해하는 데 중요한 정보들을 제공한다. 이번 연구에서는 진티단층, 모화단층, 수성지2단층 그리고 왕산단층을 대상으로 대자율이방성 방법을 적용하여 단층가우지의 미세구조를 분석하고 단층의 운동감각을 해석하였으며, 그 결과를 바탕으로 단층암의 미세구조 발달과정과 제4기 응력장에 대해 논의하였다. 대자율이방성 측정을 통해 구해진 자기미세구조로부터 단층의 운동감각을 분석한 결과, 왕산단층을 제외한 나머지 세 단층은 모두 역이동성이 우세한 단층운동에 의한 미세구조가 발달되어 있다. 단층면에 거의 평행한 편평형의 미세구조가 발달하는 점과 이방성정도가 클수록 편평형의 정도가 증가하는 특징에 근거할 때, 단층가우지의 미세구조는 점진적인 변형에 의한 최종응력변형이 기록된 것으로 해석된다. 또한, 최후기에 재활된 역단층운동으로 기존의 단층가우지 내에 존재하는 미세구조들은 모두 지워지고 최후기의 운동에 의한 미세구조만이 기록된 것으로 판단된다. 단층가우지의 자기미세구조 분석을 통해 유추된 운동감각으로부터 구해진 고응력장은 동북동-서남서 방향의 압축력이며, 이 응력장은 지진원 메커니즘, 수압파쇄시험 그리고 단층 지구조분석결과를 통해 구해진 한반도 남동부의 고응력장과 부합된다. 결론적으로 한반도 일원은 제4기 동안 동-서 내지 동북동-서남서 방향의 압축성 응력장이 지배적이었던 것으로 해석된다.

Abstract AI-Helper 아이콘AI-Helper

The Quaternary faults are extensively observed along major inherited fault zones (i.e. Yangsan Fault System, Ulsan Fault, Yeonil Tectonic Line, Ocheon Fault System) in SE Korea. Their geometry and kinematics provide a very useful piece of information about the Quaternary crustal deformation and stre...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
단층 운동학적 특징은 어떻게 분석되는가? 특히, 단층의 운동감각(정이동, 역이동, 주향이동, 사교이동 등)은 당시 응력장에 대한 정보를 제공하며, 나아가 지구조환경에 대한 해석을 가능하게 한다. 단층의 운동감각을 결정하기 위해서는 전통적으로 야외에서 단층활면 상의 단층조선(slickenline), 결정 섬유(crystal fiber), 단층홈(fault groove) 등의 운동감각 지시자(sense indicator)를 측정하거나, 단층면에 인접해 발달하는 끌림습곡(drag fold), S-C fabric 등의 노두규모 구조를 분석하는 구조지질학적 방법이 널리 사용되고 있다. 또 다른 방법으로는 단층암 내입자들의 배열방향, 즉 미세구조를 슬랩분석, 현미경 관찰 등을 통해 측정하고, 이로부터 단층의 운동감각을 결정하는 미시적 접근방법이 있다.
주요 지질구조선에는 무엇이 있는가? 한반도 남동부 일원에는 주요 지질구조선(양산단층대, 울산단층, 연일구조선, 오천단층계 등)을 따라 제4기 단층들이 도처에 분포하고 있으며, 이들의 기하와 운동학적 특징은 한반도의 제4기 지각변형사와 현생응력상태 등을 이해하는 데 중요한 정보들을 제공한다. 이번 연구에서는 진티단층, 모화단층, 수성지2단층 그리고 왕산단층을 대상으로 대자율이방성 방법을 적용하여 단층가우지의 미세구조를 분석하고 단층의 운동감각을 해석하였으며, 그 결과를 바탕으로 단층암의 미세구조 발달과정과 제4기 응력장에 대해 논의하였다.
단층의 운동감각에는 무엇이 있는가? 단층과 전단대의 기하와 운동학적 특징은 해당지역의 지각변형사를 이해함에 있어 중요한 단서를 제공한다. 특히, 단층의 운동감각(정이동, 역이동, 주향이동, 사교이동 등)은 당시 응력장에 대한 정보를 제공하며, 나아가 지구조환경에 대한 해석을 가능하게 한다. 단층의 운동감각을 결정하기 위해서는 전통적으로 야외에서 단층활면 상의 단층조선(slickenline), 결정 섬유(crystal fiber), 단층홈(fault groove) 등의 운동감각 지시자(sense indicator)를 측정하거나, 단층면에 인접해 발달하는 끌림습곡(drag fold), S-C fabric 등의 노두규모 구조를 분석하는 구조지질학적 방법이 널리 사용되고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (108)

  1. Ashurkov, S.V., San'kov, V.A., Miroschnichenko, A.I., Lukhnev, A.V., Sorokin, A.P., Serov, M.A. and Byzov, L.M., 2011, GPS geodetic constrains on the kinematics of the Amurian Plate. Russian Geology and Geophysics, 52, 239-249. 

  2. Astudillo, N., Roperch, P., Townley, B., Arriagada, C. and Maksaev, V., 2008, Importance of small-block rotatons in damage zones along transcurrent faults. Evidence from the Chuquicamata open pit, Northern Chile. Tectonophysics, 450, 1-20. 

  3. Back, J.J., Kyung, J.B. and Choi, H, 2011, Analysis on the source characteristics of the recent five-year earthquakes occurred in the central and western areas of the Korean Peninsula. Journal of Korean Earth Science Society, 32, 161-169 (in Korean with English abstract). 

  4. Bae, S., Jeon, S., Kim, J. and Kim, J., 2008, Characteristics of the regional rock stress field at shallow depth in the Kyungsang Basin with in-situ rock stress measurement. Tunnel & Underground space, 18, 149-161. 

  5. Balsley, J.R. and Buddington, A.F., 1960, Magnetic susceptibility anisotropy and fabric of some Adirondack granites and ortho-gneisses. American Journal of Science, 258-A, 6-20. 

  6. Bird, P., 2003, An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystem, 4, doi:10.1029/2001GC000252. 

  7. Borradaile, G.J. and Henry, B., 1997, Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Science Reviews, 42, 49-93. 

  8. Borradaile, G.J., 1988, Magnetic susceptibility, petrofabric and strain - a review. Tectonophysics, 206, 203-218. 

  9. Bouchez, J.L., 1997, Granite is never isotropic: an introduction to AMS studies of granitic rocks. In Granite: From Segregation of Melt to Emplacement Fabrics (eds. Bouchez, J.L., Hutton, D.H.W. and Stephens, W.E.), Kluwer Academic Publishers, Dordrecht, 95-112. 

  10. Bradak, B. and Kovacs, J., 2014, Quaternary surface processes indicated by the magnetic fabric of undisturbed, reworked and fine-layered loess in Hungary. Quaternary International, 319, 76-87. 

  11. Butler, F.R., 1992, Paleomagnetism: Magnetic Domains the Geologic Terranes. Blackwell Scientific Publication, 319p. 

  12. Calais, E., Vergnolle, M., San'ko, V., Lukhnev, A., Miroshnitchenko, A., Amarjargal, S. and Dverchre, J., 2003, GPS measurements of crustal deformation in the Baikal-Mongolia area (1994-2002): implications for current kinematics of Asia. Journal of Geophysical Research, 108, Doi: 10.1029/2002JB002373. 

  13. Chadima, M. and Jelinek, V., 2008, Anisoft 4.2.-Anisotropy data browser, Geophysics and Geodesy, Special issue. 

  14. Chae, B.G. and Chang, T.W., 1994, Movement history of Yangsan Fault and its related fractures at Chongha-Yongdok area, Korea. Journal of the Geological Society of Korea, 30, 379-394 (in Korean with English abstract). 

  15. Chang, C.J. and Chang, T.W., 1998, Movement History of the Yangsan Fault based on Paleostress Analysis. The Journal of Engineering Geology of Korea, 8, 35-49 (in Korean with English abstract). 

  16. Chang, T,W., 2001, Quaternary tectonic activity at the eastern block of the Ulsan Fault. Journal of the Geological Society of Korea, 37, 431-444 (in Korean with English abstract). 

  17. Cheon, Y., Son, M., Song C.W., Kim, J.-S. and Sohn, Y.K., 2012, Geometry and kinematics of the Ocheon Fault System along the boundary between the Miocene Pohang and Janggi basins, SE Korea, and its tectonic implications. Geosciences Journal, 16, 253-273. 

  18. Cheong, C.-S., Kim, J.-M., Lee, S.-H., Jeong, G.Y., Chang, H.-W., Choi, J.-H., Im, C.-B. and Chang, B.U., 2000, Rb-Sr and K-Ar age dating in fault gouges of the Gwaereung, Madong, Gaegok, and Wangsan faults around the Ulsan Fault zone (abstract). Annual Conference of the Geological Society of Korea, 103. 

  19. Cheong, C.-S., Lee, K.-S., Lee, S.-H., Kim, J.-M., Han, J.-H., Shin, H.S., Barg, E.J., Park, C.-S., Kim, H., Hong, D., Choi, J.-H., Lee, S.H., Lim, S.H., Kim, H.S., Yang, J.S. and Lee, H.-K., 2001, Absolute age determination of Quaternary fault and formation. Technical Note of Korea Institute of Nuclear Safety (KINS/HR-392, KBSI-2001-20-0131-0040), 166p (in Korean with English abstract). 

  20. Cho, H, Kim, H., Kim, J.-S., Cheon, Y. and Son, M., 2013, Magnetic fabric (AMS) of the late Cretaceous to Paleogene Bulguksa Granites, SE Korea: interpretation of granite emplacement mechanism and plate tectonic setting. Preceedings of the Annual Joint Conference, Petrological Society of Korea and Mineralogical Society of Korea, 57-59 (in Korean). 

  21. Cho, H., Lee, K., Lee, J., Kim, J.-S., Kim, K.-K., Son, M. and Kim, I.-S., 2010, Anisotropy of magnetic susceptibility (AMS) of the Geochang stone quarries: application to determination of stone fabrics and dignity evaluation (abstract). Annual Conference of the Geological Society of Korea, 217. 

  22. Cho, H., Son, M. and Kim, I.-S., 2007, Anisotropy of magnetic susceptibility (AMS) of granitic rocks in the eastern region of the Yangsan Fault. Economic and Environmental Geology, 40, 171-189 (in Korean with English abstract). 

  23. Cho, K.-H., Takagi, H., Iwamura, A., Awaji, D., Chang, T.W., Shon, S.-W., Itaya, T. and Okada, T., 2001, Timing of the Hydrothermal Alteration Associated with the Fault Activities along the Ulsan Fault Zone, Southeast Korea. Economic and Environmental Geology, 34, 583-593 (in Korean with English abstract). 

  24. Choi, J.-H., Yang, S.-J. and Kim, Y.-S., 2009, Fault zone classification and structural characteristics of the southern Yangsan fault in the Sangcheon-ri area, SE Korea. Journal of the Geological Society of Korea, 45, 9-28 (in Korean with English abstract). 

  25. Choi, P., Ryoo, C.-R., Kwon, S., Chwae, U., Hwang, J., Lee, S.,R. and Lee, B.-J., 2002. Fault tectonics analysis of the Pohang-Ulsan area, SE Korea: Implications for active tectonics. Journal of the Geological Society of Korea, 38, 33-50 (in Korean with English abstract). 

  26. Choi, P.Y., 1995, Aspects of stress inversion methods in fault tectonic analysis. Annales Tectonic, 9, 22-38. 

  27. Choi, W.-H., 2003, Neotectonics of the Gyeongju-Ulsan area in the southeastern part of Korean Peninsula. Ph.D. dissertation, Seoul National University, 205p (in Korean with English abstract). 

  28. Chwae, U.-C. and Choi, S.-J., 2007, Active fault study of Korea: the past, present and future. In Quaternary Tectonics of Southeastern Korea. (eds. Kee, W.-S., Kihm, Y.-H. and Song, K.-Y.), The 5th Symposium of the Geology of Korea, KIGAM, 1-31 (in Korean with English abstract). 

  29. Chwae, U.-C., Hwang, J.H., Kim, Yun, U. and Kim, D.H., 1998, Geological report of the Eoil sheet (1:25,000). Korea Institute of Geology of Mining and Materials, 46p. 

  30. Constable, C. and Tauxe, L., 1990, The bootstrap for magnetic susceptibility tensors. Journal of Geophysical Research, 95, 8383-8395. 

  31. Dunlop, D.J. and Ozdemir, O., 1997, Rock magnetism: Fundamentals and Fontiers. Cambridge University Press, Cambridge, 573p. 

  32. Elliot, D., 1972, Deformation paths in structural geology. Geological Society of America Bulletin, 83, 2621-2638. 

  33. Ellwood, B.B. and Whitney, J.A., 1980, Magnetic fabric of the Elberton granite, northeast Georgia. Journal of Geophysical Research, 85, 1481-1486. 

  34. Fisher, R.A., 1953, Dispersion on a sphere. Proceedings of the Royal Society of London, 217, 295-305. 

  35. Flinn, D., 1962, On folding during three-dimensional progressive deformation. Quarterly Journal of the Geological Society of London, 118, 385-433. 

  36. Fossen, H., 2010, Structural Geology. Cambridge University Press, Cambridge, 463p. 

  37. Fournier, M., Jolivet, L., Davy, P. and Thoma, J.-C., 2004, Backarc extension and collision: an experimental approach to the tectonics of Asia. Geophysical Journal International, 157, 871-889. 

  38. Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfess, D. and Muller, B., 2008, The World Stress Map based on database release 2008. 

  39. Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfess, D. and Muller, B., 2009, The World Stress Map based on the database release 2008, equatorial scale 1:46,000,000. Commission for the Geological Map of the World, Paris. 

  40. Heki, K., Miyazaki, S., Takahashi, H., Kasahara, M., Kimata, F., Miura, S., Vasilenko, N.F., Ivashchenko, A. and An, K.-D., 1999, The Amurian Plate motion and current plate kinematics in eastern Asia. Journal of Geophysical Research, 104, 29147-29155. 

  41. Henry, B. and Daly, L., 1983, From qualitative to quantitative magnetic anisotropy analysis: The prospect of finite strain calibration. Tectonophysics, 98, 327-336. 

  42. Henry, B., 1985, Magnetic fabrics and superimposed deformations: example of Dalradian rocks from the southwest Highlands of Scotland. Physics of the Earth and Planetary Interiors, 40, 187-200. 

  43. Henry, B., Jordanova, D., Jordanova, N., Souque, C. and Robion, P., 2003, Anisotropy of magnetic susceptibility of heated rocks. Tectonophysics, 366, 241-258. 

  44. Herrero-Bervera, E., Canon-Tapia, E., Walker, G.P.L. and Guerrero-Garcia, J.C., 2002, The Nuuanu and Wailau giant landslides: insights from paleomagnetic and anisotropy of magnetic susceptibility (AMS) studies. Physics of the Earth and Planetary Interiors, 129, 83-98. 

  45. Hobbs, B.E., Means, W.D. and Williarms, P.F., 1976, An outline of structural geology. John Wiley & Sons, New York, 571p. 

  46. Hoe, S.Y. and Kyung, J.B., 2008, Fault plane solutions for the recent earthquakes in the central region of South Korea. Journal of Korean Earth Science Society, 29, 437-445. 

  47. Hrouda, F., 1979, Magnetic anisotropy and plastic deformation in metamorphic rocks. Geodynamic Investigations in Czechoslovakia, 271-275. 

  48. Hrouda, F., 1982, Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 5, 37-82. 

  49. Hrouda, F., 1994, A technique for the measurement of thermal-changes of magnetic-susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophysical Journal International, 118, 604-612. 

  50. Hrouda, F., Jelinek, V. and Zapletal, K., 1997, Refined technique for susceptibility resolution into ferromagnetic and paramagnetic components based on susceptibility temperature-variation measurement. Geophysical Journal International, 129, 715-719. 

  51. Hwang, B.H., Lee, J.D., Yang, K. and McWilliams, M., 2007, Cenozoic strike-slip displacement along the Yangsan fault, southeast Korean Peninsula. International Geology Review, 49, 768-775. 

  52. Hwang, B.H., Son, M., Yang, K., Yoon, J. and Ernst, W.G., 2008, Tectonic evolution of the Gyeongsang Basin, southeastern Korea from 140 Ma to the present, based on a strike-slip and block rotation tectonic model. International Geology Review, 50, 343-363. 

  53. Iio, Y., Sagiya, T., Kobayashi, Y. and Shiozaki, I., 2002, Water-weakened lower crust and its role in the concentrated deformation in the Japanese Islands. Earth and Planetary Science Letter, 203, 245-253. 

  54. Jelinek, V., 1978, Statistical processing of anisotropy magnetic susceptibility measured on groups of specimens. Studia Geophysica Geodaetica, 22, 50-62. 

  55. Jelinek, V., 1981, Characterization of the magnetic fabric of rocks. Tectonophysics, 79, 63-67. 

  56. Jun, M.-S. and Jeon, J.S., 2010, Focal mechanism in and around Korean Peninsula. Jigu-Mulli-wa-Mulli-Tamsa, 13, 198-202 (in Korean with English abstract). 

  57. Jun, M.-S., 1991, Body-wave analysis for shallow intraplate earthquakes in the Korean Peninsula and Yellow Sea. Tectonophysics, 192, 345-357. 

  58. Kang, J.-H. and Ryoo, C.-R., 2009, The movement history of the southern part of the Yangsan Fault Zone interpreted from the geometric and kinematic characteristics of the Sinheung Fault, Eonyang, Gyeongsang Basin, Korea. The Journal of the Petrological Society of Korea, 18, 19-30 (in Korean with English abstract). 

  59. Kee, W.-S., Kim, B.C., Hwang, J.H., Song, K.-Y. and Kihm, Y.-H., 2007, The Eupcheon fault, SE Korea. In: Quaternary Tectonics of Southeastern Korea (eds. Kee, W.-S., Kim, Y.-H. and Song, K.-Y.), The 5th Symposium of the Geology of Korea, KIGAM, 119-149 (in Korean with English abstract). 

  60. Kim, I.-S., 1992, Origin of tectonic evolution of the East Sea (Sea of Japan) and the Yangsan Fault System: a new synthetic interpretation. Journal of the Geological Society of Korea, 28, 84-109 (in Korean with English abstract). 

  61. Kim, S.G., 1980, Seismicity of the Korean Peninsula and its vicinity. Journal of the Korean Institute of Mining Geology, 13, 51-63. 

  62. Kim, S.K., Jun, M.-S. and Jeon, J.-S., 2006, Recent research for the seismic activities and crustal velocity structure. Economic and Environmental Geology, 39, 369-384 (in Korean with English abstract). 

  63. Kim, Y.-S., Jin, K., Choi, W.-H. and Kee, W.-S., 2011, Understanding of active faults: A review for recent researches. Journal of the Geological Society of Korea, 47, 723-752 (in Korean with English abstract). 

  64. Kyung, J.B. and Okada, A., 1995, Liquefaction phenomena due to the occurrences of great earthquake: Some cases in central Japan and Korea. Journal of the Geological Society of Korea, 31, 237-250. 

  65. Kyung, J.B., 1997, Paleoseismological study on the midnorthern part of Ulsan Fault by trench method. The Journal of Engineering Geology, 7, 81-90. 

  66. Lee H.-K. and Yang, J.-S., 2003, ESR dating of the Wangsan fault, South Korea. Quaternary Science Reviews, 22, 1339-1343. 

  67. Lee, Y.H., 2003, Quaternary faults in the eastern area of the Ulsan fault (Korea). Thesis of Master, Pusan National University, 74p (in Korean with English abstract). 

  68. Lister, G.S., 1977, Discussion: Crossed-girdle c-axis fabrics in quartzites plastically deformed by plane strain and progressive simple shear. Tectonophysics, 39, 51-54. 

  69. Martin-Hernandez, F., Luneburg, C.M., Aubourg, C. and Jackson, M., 2004, Magnetic Fabric: Method and Application. Geological Society of London, 551p. 

  70. Miyazaki, S., Tsuji, H., Hatanaka, Y., Abe, Y., Yoshimura, A., Kamada, K., Kobayashi, K., Morishita, H. and Iimura, Y., 1996, Establishment of the nationwide GPS array (GRAPES) and its initial results on the crustal deformation of Japan. Bulletin of the Geographical Survey Institute, 42, 27-41. 

  71. Moon, T., Son, M., Chang, T.-W. and Kim, I.-S., 2000, Paleostress reconstruction in the Tertiary basin areas in southeastern Korea. Journal of the Korean Earth Science Society, 21, 230-249 (in Korean with English abstract). 

  72. Moores, E.M. and Twiss, R. J., 1995, Tectonics. W.H. Freeman and Company, New York, 415p. 

  73. Nishitani, T. and Kono, M., 1983, Curie temperature and lattice constant of oxidized titanomagnetite. Geophysical Journal of the Royal Astronomical Society, 74, 585-600. 

  74. Owens, W.H. and Bamford, D., 1976, Magnetic, seismic, and other anisotropic properties of rock fabrics. Philosophical transactions of the Royal Society of London, 283, 55-68. 

  75. Park, J.-C., Kim, W., Chung, T.W., Baag, C.E. and Ree, J.-H., 2007, Focal mechanisms of recent earthquakes in the Southern Korean Peninsula. Geophysical Journal International, 169, 1103-1114. 

  76. Park, J.K., Tanczyk, E.I. and Desbarats, A., 1988, Magnetic fabric and its significance in the 1400 Ma mealy Diabase Dykes of Labrador, Canada. Journal of Geophysical research, 93, 13689-13704. 

  77. Park, M.E., Cho, H., Son, M. and Sohn, Y.K., 2013, Depositional processes, paleoflow patterns, and evolution of a Miocene gravelly fan-delta system in SE Korea constrained by anisotropy of magnetic susceptibility analysis of interbedded mudrocks. Marine and Petroleum Geology, 48, 206-223. 

  78. Passchier, C.W. and Trouw, R.A.J., 2005, Microtectonics (2nd Ed.). Springer, 366p. 

  79. Petit, C. and Fournier, M., 2005, Present-day velocity and stress fields of the Amurian Plate from thin-shell finiteelement modelling. Geophysical Journal International, 160, 357-369. 

  80. Ramsay, J.G. and Huber, M.I., 1983, The Techniques of Modern Structural Geology: Strain Analysis. Academic Press, London, 307p. 

  81. Rochette, P., Jackson M. and Aubourg, C., 1992, Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Review of Geophysics, 30, 209-226. 

  82. Ryoo, C.-R., Moon, S., Lee, Y.H., Choi, S.-J. and Chwae, U., 2004, Quateranry faults around Bulguk-sa, Gyeongju, Korea. KIGAM Bulletin, 8, 3-17 (in Korean with English abstract). 

  83. Ryoo, C.-R., Yang, K., Lee, S.-W. and Kim, I.-S., 1996, Quaternary fault in the vicinity of the Ulsan fault. The Journal of College of Education, Pusan National University, 33, 311-327 (in Korean with English abstract). 

  84. Sagnotti, L., Speranza, F., Winkler, A., Mattei, M. and Funiciello, R., 1998, Magnetic fabric of clay sediments from the external northern Apennines (Italy). Physics of the Earth and Planetary Interiors, 105, 73-93. 

  85. Schellart, W.P. and Rawlinson, N., 2010, Convergent plate margin dynamics: New perspectives from structural geology, geophysics and geodynamic modelling. Tectonophysics, 483, 4-19. 

  86. Schellart, W.P., Stegman, D.R. and Freeman, J., 2008, Global trench migration velocities and slab migration induced upper mantle volume fluxes: Constraints to find an Earth reference frame based on minimizing viscous dissipation. Earth-Science Reviews, 88, 118-144. 

  87. Skjernaa, L., 1980, Rotation and deformation of randomly oriented planar and linear structures in progressive simple shear. Journal of Structural Geology, 2, 101-109. 

  88. Solum, J.G. and van der Pluijm, B.A., 2009, Quantification of fabrics in clay gouge from the Carboneras fault, Spain and implications for fault behavior. Tectonophysics, 475, 554-562. 

  89. Son, M. and Ryoo, C.-R., 1999, Quaternary faults in the northeastern part of the Ulsan Fault zone, Korea (abstract). Proceedings Korea-Japan/Japan-Korea Geomorphological Conference, 145-146. 

  90. Son, M., Cheong, H.-Y. and Kim, I.-S., 2002, Geology and geological structures in the vicinities of the southern part of the Yonil Tectonic Line, SE Korea. Journal of the Geological Society of Korea, 38, 175-197 (in Korean with English abstract). 

  91. Son, M., Kim, I.-S. and Sohn, Y.K., 2005, Evolution of the Miocene Waup basin, SE Korea, in response to dextral shear along the southwestern margin of the East Sea (Sea of Japan). Journal of Asian Earth Sciences, 25, 529-544. 

  92. Son, M., Kim, J.-S., Chong, H.-Y., Lee, Y.H. and Kim, I.-S., 2007, Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications. The Korean Society of Petroleum Geology, 13, 1-16 (in Korean with English abstract). 

  93. Son, M., Lee, Y.H., Kim, I.-S. and Chang, T.W., 2001, A Quaternary reverse fault (Chail fault) in the Chail-Maeul, Buk-gu, Ulsan, Korea (abstract). Proceedings of the Geological Society of Korea Conference Fall 2001, 65p (in Korean). 

  94. Son, M., Seo, H.J. and Kim, I.-S., 2000, Geological structures and evolution of the Miocene Eoil basin, southeastern Korea. Geosciences Journal, 4, 73-88. 

  95. Son, M., Song, C.W., Kim, M.-C., Cheon, Y., Jung, S., Cho, H., Kim, H.-G., Kim, J.S. and Sohn, Y.K., 2013, Miocene crustal deformation, basin development, and tectonic implication in the southeastern Korean Peninsular. Journal of the Geological Society of Korea, 49, 93-118 (in Korean with English abstract). 

  96. Song, M-.Y. and Kyung, J.B., 1996, A Geophysical survey in the central part of the Ulsan Fault and determination of fault characteristics. Journal of Korean Earth Science Society, 17, 250-212. 

  97. Soto, R., Mattei, M. and Casas, A.M., 2003, Relationship between AMS and folding in an area of superimposed folding (Cotiella-Boixols nappe, Southern Pyrenees). Geodinamica Acta, 16, 171-185. 

  98. Stacey, F.D., Joplin, G. and Lindsay, J., 1960, Magnetic anisotropy and fabric of some foliated rocks from S.E. Ausralia. Geofisica Purae Applicata, 47, 30-40. 

  99. Tarling, D.H. and Hrouda, F., 1993, The Magnetic Anisotropy of Rocks. Chapman and Hall, London. 227p. 

  100. Tauxe, L., 2002, Paleomagnetic Principles and Practice. Springer, New York, 299p. 

  101. Tomezzoli, R.N., MacDonald, W.D. and Tickyj, H., 2003, Composite magnetic fabrics and S-C structure in granitic gneiss of Cerro de los Viejos, La Pampa province, Argentina. Journal of Structural Geology, 25, 159-169. 

  102. Twiss, R.J. and Moores, E.M., 2007, Structural Geology (second edition). W.H. Freeman and Company, New York, 736p. 

  103. Vergnolle, M., Calais, E. and Dong, L., 2007, Dynamics of continental deformation in Asia. Journal of Geophysical Research, 112, doi:10.1029/2006JB004807. 

  104. Wang, K., Wada, I. and Ishikawa, Y., 2004, Stresses in the subducting slab beneath southwest Japan and relation with plate geometry, tectonic forces, slab dehydration, and damaging earthquakes. Journal of Geophysical Research, 109, doi:10.1029/2003JB002888. 

  105. Wang, Q., Zhang, P., Freymueller, J., Bilham, R., Larson, K., Lai, X., You, X., Niu, Z., Wu, J., Li, Y., Liu, J., Yang, Z. and Chen, Q., 2001, Present-day crustal deformation in China constrained by global positioning system measurements. Science, 294, 574-577. 

  106. Yang, J.S., 2006, Quaternary fault activity in the southeastern part of the Korean Peninsula. Ph.D. dissertation, Kangwon National University, 382p (in Korean with English abstract). 

  107. Yoon, S., 1989, Tertiary stratigraphy of the southern Korean Peninsula. In: Proceeding of International Symposium on Pacific Neogene Continental and Marine Events (eds. Liu, G., Tsuchi, R. and Lin, Q.), 195-207. 

  108. Zonenshain, L.P. and Savostin, L.A., 1981, Geodynamics of the Baikal rift zone and plate tectonics of Asia. Tectonophysics, 76, 1-45. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로