$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

장군광산 갱내수와 침출수의 지화학적 및 침전물의 특성 연구
Characteristics of Precipitates and Geochemistry of Mine and Leachate Water in Janggun Mine 원문보기

韓國鑛物學會誌 = Journal of the Mineralogical Society of Korea, v.27 no.3, 2014년, pp.125 - 134  

김준영 (한국시설안전공단) ,  장윤득 (경북대학교 지질학과) ,  김영훈 (안동대학교 환경공학과) ,  김정진 (안동대학교 지구환경과학과)

초록
AI-Helper 아이콘AI-Helper

경도 $E129^{\circ}$ 03' 40", 위도 $N36^{\circ}$ 51' 19"에 위치한 장군광산은 과거에 갱도채굴을 하였으며 현재에는 갱구와 광미로부터 갱내수와 침출수가 유출되고 있다. 갱내수와 침출수의 pH 값의 범위는 6.81-9.59로 중성내지 약염기성을 나타낸다. 주요 양이온음이온의 농도 범위는 Mg (6.70-129.80 mg/L), Ca (289.29-661.02 mg/L), Mn (4.74-14.38 mg/L), $SO{_4}^{2-}$ (1205.00-2448.69 mg/L) 등이다. 하천바닥에 침전된 황갈색의 침전물은 결정도가 아주 낮은 2-line 페리하이드라이트($Fe_2O_3{\cdot}0.5H_2O$로 구성되어 있다. 주사전자현미경 관찰결과 $0.1{\mu}m$ 정도의 구형의 미세입자로 구성되어 있으며 에너지분산분광분석에 의한 반정량 결과 주 구성원소는 Fe이며 그 외 소량의 Mn, Ca, Si, As 등을 포함하고 있다.

Abstract AI-Helper 아이콘AI-Helper

The Janggun mine (Longitude $E129^{\circ}$ 03' 40", Latitude $N36^{\circ}$ 51' 19") was once operated as an underground mine and recently significant amount of mine and leachate water has been discharged from the mine adits and tailing dumps. Mine and leachate waters are charac...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 또한, 갱내수와 침출수가 흐르는 배수로에는 적갈색의 침전물이 형성되어 미관상 불쾌감을 주고 있다. 본 연구에서는 장군광산에서 배출되는 광산배수와 침전물에 대한 지화학적 및 광물학적 특성을 연구하여 광산배수의 지화학적 변화를 일으키는 요인과 하천 바닥에 생성되는 침전물의 생성과정을 밝히고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
산업화가 가속됨에 따라 일어난 광업의 변화는? 20세기로 접어들면서 산업화가 가속됨에 따라 자원 소모량의 증가와 함께 무분별하게 자원을 개발하였으며, 1980년대 후반기에 우리나라의 산업구조의 변화와 에너지 소비형태의 변화, 광업의 경제성 감소 등으로 인하여 채광 활동이 위축되고 광산 경영의 비합리성으로 인하여 많은 광산들이 휴광 혹은 폐광을 하게 되었다.
폐광산의 주요 오염원 중 가장 지속적인 것은? 폐광산의 주요 오염원 중에서 산성광산배수 (Acid Mine Drainage: AMD)는 가장 지속적으로 나타나는 심각한 광해문제의 하나이다. 산성광산배수는 광산지역 오염의 일반적인 형태로, 폐광석과광미와 같은 황화광물이 포함된 광산폐기물이 산소 및 물과 반응하여 산화되면서 발생한다.
페리하이드라이트가 환경지질학에서 중요한 이유는? 페리하이드라이트는 환경지질학에서 중요하다. 왜냐하면 광산폐기물 환경에서 일반적으로 발생하고, 흡착 또는 유기화합물과 다양한 이온의 결합으로 공침물을 형성하기 때문이다(Jambor and Dutrizac, 1998).
질의응답 정보가 도움이 되었나요?

참고문헌 (35)

  1. Ahn, K.S., Jeong, H.H., and Lee, H.K. (1993) Prograde Reaction Series in Metapelites around the Janggun Mine. Journal of Korean Society of Economic and Environmental Geology, 26, 473-487 (in Korean with English abstract). 

  2. Bigham, J.M., Schwertmann, U., and Pfab, G. (1996) Influence of pH on mineral speciation in a bioreactor simulating acid mine drainage. Appled Geochemisty, 11, 845-849. 

  3. Bigham, J.M., Schwertmann, U., Carlson, L., and Murad, E. (1992) Mineralogy of precipitates formed by the biogeochemical oxidation of Fe(II) in mine drainage. In Skinner, H.C. and Fitzpatrick, R.W.(ed), Biomineralization processes of iron and manganess:modern and ancient environments, CATENA SUPPLEMENT 21-A Cooperating. Jourmal of the International Society of Soil Science, 219-232. 

  4. Bigham, J.M., Schwertmann, U., Carson, L., and Murad, E. (1990) A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochimica et Cosmochimica Acta, 54, 2743-2758. 

  5. Bowell, R.J. and Bruce, I. (1995) Geochemistry of iron ochres and mine waters from Levant Mine, Cornwall. Applied Geochemistry, 10, 237-250 

  6. Brady, K.B.C, Perry, E.F., Beam, R.L., Bisko, D.C., Gardner, M.D., and Tarantino, J.M. (1994) Evaluation of acid-base accounting to predict the quality of drainage at surface coal mines in Pennsylvania. Pittsburgh, USA, U.S. Bureau of Mines Special Publication SP 06A, 138-147 

  7. Childs, C.W., Downes, C.J., and Wells, N. (1982) Hydrous Iron Oxide Minerals with Short Range Order Deposited in a Spring/Stream System, Tongariro National Park, New Zealand. Australian Journal of Soil Research, 20, 119-129. 

  8. Chon, H.T., Kim, J.Y., and Choi, S.Y. (1998) Evaluation of Heavy Metal Contamination in Geochemical Environment around the Abandoned Coal Mine -With special reference to geochemical environment around the Imgok Creek in the Gangreung Coal Field-. Journal of Korean Society of Economic and Environmental Geology, 31, 499-508 (in Korean with English abstract). 

  9. Dold, B. (2003) Dissolution kinetics of schwertmannite and ferrihydrite in oxidized mine samples and their detection by differential X-ray diffraction (DXRD). Applied Geochemistry, 18, 1531-1540. 

  10. Hwang, C.K., Kim, K.W., and Lee, H.K. (1999) Investingation of Trace Element Contamination in Stream Sediments in the Chungnam Coal Mine Area Using Geostatistical Approach. Journal of Korean Society of Economic and Environmental Geology, 32, 63-72 (in Korean with English abstract). 

  11. Jambor, J.L. and Dutrizac, J.E. (1998) Occurrence and constitution of nature and synthetic ferrihydrite, a widespread iron oxyhydrixide. Chemical Review, 98, 2549-2585. 

  12. Ji, S.W., Kim, S.J., and Lee, J.B. (1997) Speciation and Adsorption of Heavy Metals in Streams in the Vicinity of the Youngdong Coal Mine. Journal of Korean Society of Mineral and Energy Resources Engineers, 34, 326-335 

  13. Jung, Y.J. and Lee, S.H. (2001) Potential Contamination of Soil and Groundwater from the Residual Mine Tailings in the Restored Abandoned Mine Area : Shihung Mine Area. Journal of Korean Society of Economic and Environmental Geology, 34, 461-470 (in Korean with English abstract). 

  14. Jung, M.C. (2003) Environmental Assessment for Acid Mine Drainage by Past Coal Mining Activities in the Youngwol, Jungseon and Pyungchang areas, Korea. Journal of Korean Society of Economic and Environmental Geology, 36, 111-121 (in Korean with English abstract). 

  15. Kelly, M. (1988) Mining and the freshwater environment, Elsevier Applied Science, London and New York, 231 

  16. Kim, J.J. and Kim, S.J. (2003) Environmental, mineralogical, and genetic characterization of ochreous and white precipitates from acid mine drainages in Taebaeg, Korea. Environmental Science and Technology, 37, 2120-2126. 

  17. Kim, S.T., Yoon, Y.H., Park, J.A., and Shim, U.S. (1999) Analysis of mine tailings, field soils, and paddy soils around Jingok abandoned mine. Journal of Korean Society of Soil and Groundwater Environment, 4, 175-183 (in Korean with English abstract). 

  18. Kim, J.Y. and Chon, H.T. (1999) Chemical form of Fe-precipitates from the Imgok Creek affected by acid mine drainage in the Gangreung Coal Field. Journal of Korean Society of Mineral and Energy Resources Engineers, 36, 150-158 (in Korean with English abstract). 

  19. Lee, D.K., Chung, D.Y., and Lee, K.S. (1997) Heavy Metal Distribution Patterns and Its Effect on Paddy Soils and Stream around Gubong Mine. Journal of Korean Society of Soil and Groundwater Environment, 2, 69-80 (in Korean with English abstract). 

  20. Lee, S.M. and Kim, H.S. (1984) Metamorphic Studies on the so-called Yulri and Weonnam Groups in the Mt. Taebaeg Area. Journal of Geological Society of Korea, 20, 169-188 (in Korean with English abstract). 

  21. Lewis, A.E. (2010) Review of metal sulphide precipitation, Hydrometallurgy, 104, 222-234. 

  22. Liua, H., Maa, M., Qina, O., Yanga, L., and Wei Y. (2010) Studies on the controllable transformation of ferrihydrite. Journal of Solid State Chemistry, 183, 2045?2050. 

  23. Michaud, L.H. (1995) Recent technology related to the treatment of acid drainage, Earth Miner. Science, 63, 53-55. 

  24. Milnes, A.R., Fitzpatrick, R.W., Self, P.G., Fordham, A.W., and McClure, S.G. (1992) Natural iron precipitates in a mine retention pond neal Jabiru, Northern Territory, Australia. In Skinner, H.C. and Fitzpatrick, R.W. (ed), Biomineralization processes of iron and manganess: modern and ancient environments, Catena-A Cooperating Jourmal of the International Society of Soil Science, 233-261. 

  25. Na, K.C. (1987) Metamorphic complexes of Sobaeksan Massif (or Ryeongnam Massif). In Geology of Korea(ed. Lee D.S.). Geological Society of Korea, Kyohaksa, Seoul, 34-45. 

  26. Oh, D.G., Kim, J.Y., and Chon, H.T. (1995) Geochemistry of Acid Mine Water and Stream Sediment around the Donghae Coal Mine. Journal of Korean Society of Economic and Environmental Geology, 28, 213-220 (in Korean with English abstract). 

  27. Rose, S. and Elliott, W.C. (2000) The effects of pH regulation upon the release of sulfate from ferric precipitates formed in acid mine drainage. Appled Geochemisty, 15, 27-34. 

  28. Ryu, C.S., Kim, Y.H., and Kim, J.J. (2014) Evaluation of Purification Efficiency of Passive Treatment Systems for Acid Mine Drainage and Characterization of Precipitates in Ilwal coal mine. 

  29. Schwertmann, U. and Carlson, L. (2005) The pH-dependent transfortation of schertmannite to goethite at $25^{\circ}C$ . Clay minerals, 40, 63-66. 

  30. Schwertmann, U. and Taylor, R.M. (1989) Iron oxide. In Minerals in Soil Environments, 2nd, 8, 379-438 

  31. Sengupta, M. (1993) Environmental impacts of mining: Monitoring, restoration, and control, Lewis Publishers, London, 494 

  32. Song, S.H., Min, E.S., Kim, M.H., and Lee, H.K. (1997) Pollution by Acid Mine Drainages from the Daeseong Coal Mine in Keumsan. Journal of Korean Society of Economic and Environmental Geology, 30, 105-116 (in Korean with English abstract). 

  33. Webb, J.A. and Sasowsky, I.D. (1994) The interaction of acid mine drainage with a carbonate terrain: evidence from the Obey river, north-central Tennessee. J. Hydrol. 161, 327-346. 

  34. Winland, R.L., Traina, S.J., and Bigham, J.M. (1991) Chemical composition of ocherous precipitates from Ohio coal mine drainage. Journal of Environmental Quality, 20, 452-460. 

  35. Yu, J. (1996) Precipitation of Fe and Al compounds from the acid mine water in the Dogyae area, Korea: A qualitative measure of equilibrium modeling applicability and neutralization capacity. Aquatic Geochemistry, 1, 81-105 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로