$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

Thie study presents the biomass-derived jet (bio-jet) fuel production technologies for greenhouse gas (GHG) reduction in aviation sector. The aviation sector is responsible for the 2% of the world anthropogenic $CO_2$ emissions and the 10% of the fuel consumption: airlines' costs for fuel...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
오일 기반 원료를 사용한 바이오항공유는 어떤 반응으로 전환되는가? 오일 기반 원료를 사용한 바이오항공유는 수소첨가반응(hydro-treating), 탈산소 반응(deoxygenation) 그리고 이성질화 반응(iso-merization)/크래킹(hydro-cracking) 반응을 통하여 전환된다. 촉매 hydrothermolysis 반응은 트라이글리세라이드(triglyceride)을 가지고 전환된다.
전 세계 항공분야에서 석유제품 기반 항공유는 얼마나 사용되고 있는가? 한편, 기후변화 문제 해결을 위해 항공 부문에서의 온실가스 감축 필요성이 대두함에 따라 국제 사회의 규제 및 대응 움직임이 활발하다. 전 세계 항공분야에서 항공승객은 30억 이상으로 매년 약 5% 증가하고 있으며, 이로 인해 석유제품 기반 항공유가 연간 약 15억~17억 배럴을 사용되고 있다6) . 이러한 항공량 급증에 따라 국제적 항공기 및 공항 주변 배출가스 및 온실가스 관리에 관심이 증대되고 있다.
ASTM D1655 규격을 확장한 이유는? 한편, ASTM D 7566은 합성 탄화수소 성분을 함유한 항공 터빈 연료의 규격으로 사용되고 있는데, ASTM D1655 규격12)을 확장한 규격이다. 이는 기존 등유형 항공유안 ASTM D1655에 혼합하여 안전하게 사용할 수 있도록 항공 대체연료의 생산과 품질조절을 해야 하기 때문이다.
질의응답 정보가 도움이 되었나요?

참고문헌 (50)

  1. J.-K. Kim, E.-S. Yim, and C. Jung, "Study on comparison of global biofuels mandates policy in transport Sector", New & Renewable Energy, 7, 2011, p. 18. 

  2. J.-K. Kim, E.-S. Yim, and C. Jung, "Study on review sustainability criteria and key approaches for biofuel", New & Renewable Energy, 3, 2013, p. 1. 

  3. Y. Su, P. Zhang, and Y. Su, "An Overview of biofuels policies and industrialization in the major biofuel producing countries", Renewable and Sustainable Energy Reviews, 50, 2015, p. 991. 

  4. S. N. Naik, V.G. Vaibhav, K.R. Prasant, and K.D. Ajay, "Production of first and second generation biofuels : A comprehensive review", Renewable and Sustainable Energy Reviews, 14, 2010, p. 578. 

  5. IEA. The potential role of biofuels in commercial air transport-biojet Fuel. In: 40 IBT, editor, 2012. 

  6. C. David, P. Matteo, B. Marco, and T. Daniela, "Sustainable bio kerosene: Process routes and industrial demonstration activities in aviation biofuels", Applied Energy, 139, 2014, pp. 767-774. 

  7. Leuphana. Bio-aviation fuel feedstock supply challengs, strategies and recent developments, In: Proceedings of the ICAO aviation and sustainable alternative fuels workshop. Montreal, 2011. 

  8. A. Bauen, J. Howes, L. Bertuccioli, and C. Chudziak. "Review of the potential for biofuels in aviation", E4tech, 2009. 

  9. Report on IATA alternative fuels, International Air Transport Association, https://www.iata.org/publications/Pages/alternative-fuels.aspx. 

  10. Report on IATA Sustainable Aviation Fuel Roadmap International Air Transport Association IATA (https://www.iata.org/whatwedo/environment/Documents/safr-1-2015.pdf). 

  11. U.S. Department of Defense. Detail specification: turbine fuel, aviation, kerosene typ, JP-8 (NATO F-34), NATO F-35, and JP-8+100 (NATO F-37), 2011. 

  12. American Society for Testing and Materials. ASTM 1655-08a: standard specification for aviation turbine fuels, 2013. 

  13. American Society for Testing and Materials. ASTM D7566-12a standard specification for aviation turbine fuel containing synthesized hydrocarbons, 2013. 

  14. A. Llamas, M.J. Garcia-Martinez, A.M. Al-Lal, L. Canoira, and M. Lapuerta, "Bio-kerosene from coconut and palm kernel oils: production and properties of their blends with fossil kerosene", Fuel , 2012, 102, pp. 483-490. 

  15. C. J. Chuck, and J. Donnelly, "The compatibility of potential bio-derived fuels with Jet A-1 aviation kerosene", Appl. Energy, 118, 2013, pp. 83-91. 

  16. T. D. Hong, T. Soerawidjaj, I.K. Reksowardoj, O. Fujitac, Z. Duniani, and M.X. Pham,"A study on developing aviation biofuel for the Tropics: Production process-experimental and theoretical evaluation of their blends with fossil kerosene", Chem. Eng. Process, 74, 2013, pp. 124-130. 

  17. A. Llamas, A.M. Al-Lal, M. Hernandez, M. Lapuerta, and L. Canoira, "Biokerosene from Babassu and Camelina oils: production and properties of their blends with fossil kerosene", Energy Fuels 26, 2013, pp. 5968-5976. 

  18. A. Demirbas, "Progress and recent trends in biofuel", Prog. Energy. Combust.Sci 33, 2007, pp. 1-18. 

  19. S. Blakey, L. Rye, and C.W. Wilson, "Aviation gas turbine alternative fuels: a review", Proc. Combust. Inst, 33, 2011, pp. 2863-2885. 

  20. T. N. Kalnes, M.M. Mccall M, and D.R. Shonnard, Renewable diesel and jetfuel production from fats and oils. In: Crocker M, editor. Thermochemicalconversion of biomass to liquid fuels and chemicals. Royal Society of Chemistry, 2010. 

  21. D. R. Shonnard, L. Williams, and T.N. Kalnes, "Camelina-derived jetfuel and diesel: Sustainable advanced biofuels", Environ. Prog. Sustain. Energy, 29, 2010, pp. 382-92. 

  22. G. R. Wilson, T. Edwards, E. Corporan, and R.L. Freerks, "Certification of alternative aviation fuels and blend components", Energy Fuels 27, 2013, pp. 962-966. 

  23. W. Wang, and Tag. L, "Bio-jet fuel conversion technologies", Renewable and Sustainable Energy Reviews, 53, 2016, pp. 801-822 

  24. BYOGY Renewables. Alcohol To Jet (ATJ) emerging through ASTM. ICAO aviation and sustainable alternative fuels workshop. Montreal Canada, 2011. 

  25. B. W. HowkBW, and W.A. Lazier, Thehydration, dehydration and hydrolysis of Organic Compounds. In: national research council, editor. John Wiley & Sons,Inc: New York, NY, 1940, pp. 28-69. 

  26. N. Zhan ,Y. Hu, H. Li, D. Yu, Y. Han, and H. Huang. "Lanthanum-phosphorous modified HZSM-5 catalysts in dehydration of ethanol to ethylene: acomparative analysis", Catal. Commun, 11, 2010, pp. 633-637. 

  27. K. Weissermel, and H.J. Arpe. Industrial organic chemistry. 3rd ed. NewYork, NY: John Wiley & Sons, 2008. 

  28. B. G. Harvey, and R.L. Quintana. "Synthesis of renewable jet and diesel fuels from 2-ethyl-1- hexene", Energy. Environ. Sci, 2010, 3, pp. 352-357. 

  29. J. Taylor, M. Jenni, M. Peters, "Dehydration of fermented isobutanol for the production of renewable chemicals and fuels", Top Catal. 53, 2010, pp. 1224-1230. 

  30. F. K. Kazi, J. Fortman, R. Anex, G. Kothandaraman, D. Hsu, and A. Aden etal. Techno-economic analysis of biochemical scenarios for production of cellulosic ethanol. Golden, CO, USA: National Renewable Energy Laboratory, 2010. 

  31. A. Dutta, R.L. Bain, M.J. Biddy. "Techno-economics of the production of mixed alcohols from lignocellulosic biomass via high-temperature gasification", Environ Prog. Sustain. Energy 29, 2010, pp. 163-174. 

  32. N. Kauffman, and D. Hayes, R. Brown, "A life-cycleassessmentofadvancedbiofuel production from ahectare of corn, Fuel, 90, 2011, pp. 3306-3314. 

  33. M. Wu, M. Wang, J. Liu, and H. Huo, "Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a trans- portation fuel", Biotechnol Prog, 24, 2008, pp. 1204-1214. 

  34. M. N. Pearlson. A techno-economic and environmental assessment of hydro-processeed renewable distillate fuels [Thesis]. Cambridge, MA, USA, Massachusetts Institute of Technology, 2011. 

  35. L. Rye, S. Blakey, C.W. Wilson, Sustainability of supply or the planet :a review of potential drop in alternative aviation fuels. Energy. Environ. Sci, 3, 2010, pp. 17-27. 

  36. J. H. Gary, G.E. Handwerk, and M.J. Kaiser. Petroleumrefining, technology and economics. Boca Raton, FL, CRC Press, 2007. 

  37. L. Li, L.E. Coppola, J. Rine, J.L. Miller, and D. Walker, "Catalytic hydrothermal conversion of triglycerid estononester biofuels", Energy Fuel, 24, 2010, pp. 1305-3015. 

  38. M. Pearlson, C. Wollersheim, and J. Hileman, "A techno-economic review of hydroprocessed renewable esters and fatty acids for jet fuel production", Biofuels. Bioprod. Biorefining, 7, 2013, pp. 89-96. 

  39. F. You, and B. Wang, "Life cycle optimization of biomass-to-liquid supply chains with distributed-centralized processing networks, Ind. Eng. Chem. Res, 50, 2011, pp. 10102-10127. 

  40. J. F. Y. Hu, and Y. Lu, "Application of Fischer-Tropsch synthesis in biomass to liquid conversion", Catalysts, 2, 2012, pp. 303-326. 

  41. M. E. Dry, "Practical and theoretical aspects of the catalytic Fischer-Tropsch process", Appl. Catal A. Gen, 138, 1996, pp. 319-344. 

  42. S. T. Sie, and R. Krishna, "Fundamentals and selection of advanced Fischer-Tropsch reactors. Appl Catal A Gen, 186, 1999, pp. 55-70. 

  43. F. Morales, and B.M. Weckhuysen, "Promotion effects in Co-based Fischer-Tropsch catalysis. Catalysis, 19, 2006, pp. 1-40. 

  44. J. P. den Breejen, J.R.A. Sietsma, H. Friedrich, J.H. Bitter, and K.P. deJong,"Design of supported cobalt catalysts with maximum activity for the Fischer-Tropsch synthesis", J. Catal, 270, 2010, pp. 146-152. 

  45. J. P. den Breejen, P.B. Radstake, G.L. Bezemer, J.H. Bitter, V. Froseth, and A. Holmen, "On the origin of the cobalt particle size effects in Fischer Tropsch catalysis", J. Am. Chem. Soc, 131, 2009, pp. 7197-7203. 

  46. J. Daniell, M. Kopke, and S. Simpson, "Commercial biomass syngas fermentation", Energies, 5, 2012, pp. 5372-5417. 

  47. X. Xie, M. Wang, and J. Han, "Assessment of fuel cycle energy use and greenhouse gas emissions for Fischer Tropsch diesel from coal and cellulosic biomass, Environ SciTechnol, 45, 2011, pp. 3047-3053. 

  48. Department of Energy, Energy Efficiency & Renewable Energy, Biomass Technologies Office. Catalytic Conversion of Sugars to Conventional Liquid Fuels. USA, Department of Energy, 2012. 

  49. Talmadge M. Techno-economic analysis for the conversion of biomass-derived syngas to fuels and chemicals. Golden, CO, USA: National Renewable Energy Laboratory, 2012. 

  50. J. Han, A. Elgowainy, H. Cai, M.Q. Wang. Life-cycle analysis of bio-based aviation fuels. Bioresource. Technol. 150, 2013, pp. 447-456. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로