$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

춘화, 온도와 토양건조 기간에 따른 배추의 생장 및 수량
Effects of Vernalization, Temperature, and Soil Drying Periods on the Growth and Yield of Chinese Cabbage 원문보기

원예과학기술지 = Korean journal of horticultural science & technology, v.33 no.6, 2015년, pp.820 - 828  

이상규 (국립원예특작과학원 채소과) ,  이희주 (국립원예특작과학원 채소과) ,  김성겸 (국립원예특작과학원 채소과) ,  최장선 (국립원예특작과학원 채소과) ,  박성태 (국립원예특작과학원 채소과) ,  장윤아 (국립원예특작과학원 도시농업팀) ,  도경란 (국립원예특작과학원 과수과)

초록
AI-Helper 아이콘AI-Helper

본 연구는 여름철 배추재배시 안정적인 생산을 위한 몇가지 조건을 알아보기 위하여 춘화처리, 재배 기간 동안 온도처리, 토양수분 결핍 처리에 따른 배추의 엽육조직, 생장 및 수량에 미치는 영향을 구명하고자 실시하였다. 토양수분 결핍 2주 처리구에서는 울타리조직과 해면조직의 세포구조를 확인할 수 있었으나, 토양수분 결핍 4주 처리구에서는 세포조직이 완전히 붕괴되었다. 토양수분 결핍 처리가 가장 배추의 생장에 통계적으로 유의하게 영향을 크게 미쳤고, 배추의 생장은 토양수분 결핍 4주 처리구들에서 전반적으로 낮은 경향을 보였다. 토양수분 결핍처리는 배추의 상대생장률, 단위 엽건물중 증가율, 엽면적비율 및 비엽중, 및 엽중률에서 통계적으로 유의하게 효과가 인정되었다. 배추의 수량은 춘화처리 후 고온에서 충분히 관수한 처리구에서 가장 많았으며, 토양수분 결핍 4주 처리구들의 수량이 다른 처리구들에 비하여 유의하게 적었다. 배추 수확시 결구력은 토양수분 결핍 처리구에서 중이하로 나타나 심한 가뭄에 의한 식물체내 수분 부족은 결구력을 약화시키는 것으로 나타났다. 배추에서 문제가 되는 추대는 정식 초기에 저온처리후 고온으로 관리하여도 추대가 발생하지 않았다. 여름철 고온기 배추재배시 2주 동안 가뭄이 지속되면 엽육조직이 붕괴가 시작되고 생장이 지연되어 수확량이 줄어들기 때문에 적극적으로 관수해야 할 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

This study was carried out to determine the effects of vernalization, temperature, and soil water deficit (SD) on mesophyll cells, growth, and yield of Chinese cabbage (Brassica campestris L). The palisade parenchyma and spongy tissues of Chinese cabbage were observed under full irrigation and two w...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • , 2009). 따라서본 실험은 여름철 배추재배시 안정적인 생산을 위하여 초기 저온(춘화처리)과 재배 기간의 온도관리(적온과 고온), 토양 수분 결핍 처리(단수 기간)가 배추의 엽육조직, 생장및 발달 그리고 생산량에 미치는 영향을 구명하고자 실시하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
생육적온 보다 높은 온도에서 배추의 품질과 생산량은 어떻게 되는가? 배추는 최근에 시설재배가 시도되고 있으나 주로 노지에서 95%가 생산되기에 기상조건의 영향을 많이 받는 전형적인 밭작물이다. 호냉성 채소인 배추는 생육적온 보다 높은 온도에서는 생육저하 및 세포가 손상되어 품질저하와 생산량이 감소 된다(Lee et al., 2009; Lee et al.
배추 생산의 특징은? 배추는 최근에 시설재배가 시도되고 있으나 주로 노지에서 95%가 생산되기에 기상조건의 영향을 많이 받는 전형적인 밭작물이다. 호냉성 채소인 배추는 생육적온 보다 높은 온도에서는 생육저하 및 세포가 손상되어 품질저하와 생산량이 감소 된다(Lee et al.
배추 생산의 생리적 장해 요소 중 장마와 가뭄일 때의 배추 생산량은 어떻게 변화하는가? 배추를 저온기에 육묘할때 온도관리가 부적절하게 되면 화아분화와 추대를 유발하여 상품성이 저하되며, 여름철 고온은 저온성 작물인 배추의 생리장해를 유발하여 생장과 결구형성 등에 부정적인 영향을 미친다. 장마가 장기간 동안 지속되는 해에는 일조부족으로 배추의 생육을 떨어뜨리고 무름병 및 뿌리혹병 등의 발생을 증가시켜 생산량 감소의 원인이 된다. 반대로 비가 오지않는 해에는 토양 함수량이 낮아 배추 체내의 수분 부족현상으로 위조증상을 초래하고 신엽 발생의 억제 및 tip burn 발생으로 수량이 감소하게 된다. 이러한 생리적 장해 요소들에 대한 많은 연구가 보고되었는데, 배추 추대 특성에 대한 유전적 분석(Kakizaki et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (32)

  1. Chang, S.C. 1973. Compounding of Luft's epon embedding medium for use in electron microscopy with reference to anhydride: Epoxide ratio adjustment. Mikroskopie 29:337-342. 

  2. Dorange, G. and M. Le. Pennec. 1989. Ultrastructural characteristics of spermatogenesis in Pecten maximus (Mollusca: Bivalvia). Invertebr. Reprod. Dev. 15:109-117. 

  3. Galmes, J., J. Cifre, H. Medrano, and J. Flexas. 2005. Modulation of relative growth rate and its components by water stress in Mediterranean species with different growth forms. Oecologia 145:21-31. 

  4. Ghassemi-Golezani, K., S. Ghanehpoor, and A.D. Mohammadi-Nasab. 2009. Effects of water limitation on growth and grain filling of faba bean cultivars. J. Food Agric. Environ. 7:442-447. 

  5. Habibi, G. 2014. Silicon supplementation improves drought tolerance in canola plants. Russ. J. Plant Physiol. 61:784-791. 

  6. Hajiboland, R. and H. Amirazad. 2010. Drought tolerance in Zn-deficient red cabbage (Brassica oleracea L. var. capitata f. rubra) plants. Hortic. Sci. 37:88-98. 

  7. Hashem, A., M.N.A. Majumdar, A. Hamid, and M.M. Hossain. 1998. Drought stress effects on seed yield, yield attributes, growth, cell membrane stability and gas exchange of synthesized Brassica napus L. J. Agron. Crop Sci. 180:129-136. 

  8. Hayat, S., A. Masood, M. Yusuf, Q. Fariduddin, and A. Ahmad. 2009. Growth of indian mustard (Brassica juncea L.) in response to salicylic acid under high-temperature stress. Braz. J. Plant Physiol. 21:187-195. 

  9. Hwang, S.W., J.Y. Lee, S.C. Hong, Y.H. Park, S.G. Yun, and M.H. Park. 2003. High temperature stress of summer Chinese cabbage in alpine region. Korean J. Soil Sci. Fert. 36:417-422. 

  10. Kakizaki, T., T. Kato, N. Fukino, M. Ishida, K. Hatakeyama, and S. Matsumoto. 2011. Identification of quantitative trait loci controlling late bolting in Chinese cabbage (Brassica rapa L.) parental line Nou 6 gou. Breed. Sci. 61:151-159. 

  11. Karacic, A. and M. Weih. 2006. Variation in growth and resource utilisation among eight poplar clones grown under different irrigation and fertilisation regimes in Sweden. Biomass Bioenerg. 30:115-124. 

  12. Kawasaki, Y., S. Matsuo, K. Suzuki, Y. Kanayama, and K. Kanahama. 2013. Root-zone cooling at high air temperatures enhances physiological activities and internal structures of roots in young tomato plants. J. Jpn. Soc. Hortic. Sci. 82:322-327. 

  13. Khalil, S.K., R. St Hilaire, A. Khan, A. Rehman, and J.C. Mexal. 2011. Growth and physiology of yarrow species Achillea millefolium cv. Cerise Queen and Achillea filipendulina cv. Parker Gold at optimum and limited moisture. Aust. J. Crop Sci. 5:1698-1706. 

  14. Lee, J.G., J.W. Lee, S.H. Park, Y.A. Jang, S.S. Oh, T.C. Seo, H.K. Yoon, and Y.C. Um. 2011. Effect of low night-time temperature during seedling stage on growth of spring Chinese cabbage. J. Bio-Environ. Control 20:326-332. 

  15. Lee, S.G., J.H. Moon, Y.A. Jang, W.M. Lee, I.H. Cho, S.Y. Kim, and K.D. Ko. 2009. Photosynthetic charateristics and cellular tissue of Chinese cabbage are affected by temperature and $CO_2$ concentration. J. Bio-Environ. Control 18:148-152. 

  16. Lee, S.G., T.C. Seo, Y.A. Jang, J.G. Lee, C.W. Nam, C.S. Choi, K.H. Yeo, and Y.C. Um. 2012. Prediction of Chinese cabbage yield as affected by planting date and nitrogen fertilization for spring production. J. Bio-Environ. Control 21:271-275. 

  17. Li, D., H. Liu, Y. Qiao, Y. Wang, B. Dong, Z. Cai, C. Shi, Y. Liu, X. Li, and M. Liu. 2013. Physiological regulation of soybean (Glycine max L. Merr.) growth in response to drought under elevated $CO_2$ . J. Food Agric. Environ. 11:649-654. 

  18. Li, J., X. Zhao, Y. Nishimura, and Y. Fukumoto. 2010. Correlation between bolting and physiological properties in Chinese cabbage (Brassica rapa L. pekinensis Group). J. Jpn. Soc. Hortic. Sci. 79:294-300. 

  19. Maggio, A., S. De Pascale, C. Ruggiero, and G. Barbieri. 2005. Physiological response of field-grown cabbage to salinity and drought stress. Eur. J. Agron. 23:57-67. 

  20. Nkansah, G. O. and T. Ito. 1994. Comparative studies on growth and development of heat-tolerant and non heat-torelant tomato plants grown at different root-zone temperatures. J. Jpn Soc. Hortic. Sci. 62:775-780. 

  21. Oh, S., K.H. Moon, I.C. Son, E.Y. Song, Y.E. Moon, and S.C. Koh. 2014. Growth, photosynthesis and chlorophyll fluorescence of Chinese cabbage in response to high temperature. Korean J. Hortic. Sci. Technol. 32:318-329. 

  22. Opena, R.T., C.G. Kuo, and J.Y. Yoon. 1988. Breeding and seed production of Chinese cabbage in the tropics and subtropics. Technical Bul. No. 17. Asian Vegetable Research and Development Center (AVRDC), Shanhua, Taiwan. 

  23. Rebolledo-Martinez, A., del Angel-Perez, A.L., Becerril-Roman, A.E., and Rebolledo-Martinez, L., 2005. Growth analysis for three pineapple cultivars grown on plastic mulch and bare soil. Interciencia 30:758-763. 

  24. Sammis, T.W., B.A. Kratky, and I.P. Wu. 1988. Effects of limited irrigation on lettuce and Chinese cabbage yields. Irrig. Sci. 9:187-198. 

  25. Seong, K.C., J.R. Cho, J.H. Moon, K.Y. Kim, and H.D. Suh. 2003. Effect of triazole chemicals on bolting retardation of Chinese cabbage in spring cultivaion. J. Korean Soc. Hortic. Sci. 44:434-437. 

  26. Song, L., W.S. Chow, L. Sun, C. Li, and C. Peng. 2010. Acclimation of photosystem II to high temperature in two Wedelia species from different geographical origins: implications for biological invasions upon global warming. J. Exp. Bot. 61:4087-4096. 

  27. Stasik, O. and H.G. Jones. 2007. Response of photosynthetic apparatus to moderate high temperature in contrasting wheat cultivars at different oxygen concentrations. J. Exp. Bot. 58:2133-2143. 

  28. Weih, M. and N.E. Nordh. 2002. Characterising willows for biomass and phytoremediation: growth, nitrogen and water use of 14 willow clones under different irrigation and fertilisation regimes. Biomass Bioenergy 23:397-413. 

  29. Xu, Z.Z. and G.S. Zhou. 2005. Effects of water stress and high nocturnal temperature on photosynthesis and nitrogen level of a perennial grass Leymus chinensis. Plant Soil 269:131-139. 

  30. Xu, Z.Z. and G.S. Zhou. 2006. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of perennial grass Leymus chinensis. Planta 224:1080-1090. 

  31. Yang, K.A., C.J. Lim, J.K. Hong, C.Y. Park, Y.H. Cheong, W.S. Chung, K.O. Lee, S.Y. Lee, M.J. Cho, and C.O. Lim. 2006. Identification of cell wall genes modified by a permissive high temperature in Chinese cabbage. Plant Sci. 171:175-182. 

  32. Zellnig, G., B. Zechmann and A. Perktold. 2004. Morphological and quantitative data of plastids and mitochondria within drought-stressed spinach leaves. Protoplasma 233:221-227. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로