최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of plant biotechnology = 식물생명공학회지, v.42 no.3, 2015년, pp.154 - 160
The plant breeding technology was developed with genetic engineering. Many researchers and breeders have turned from traditional breeding to molecular breeding. Genetically modified organisms (GMO) were developed via molecular breeding technology. Currently, molecular breeding technologies facilitat...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
핵심어 | 질문 | 논문에서 추출한 답변 |
---|---|---|
유전자의 변형에는 어떤 방법들이 이용되고 있는가? | 각종 유전자의 기능분석 및 신품종 개발을 위해 유전자변형 기술을 활용한 연구개발이 진행되어 왔다. 유전자의 변형에는 화학적 돌연변이 처리, 방사선 조사, transfer DNA (T-DNA)의 삽입 등 다양한 방법이 이용되고 있다 (Kaul and Bhan 1977; Alonso et al. 2003; An et al. | |
식물에서의 진타겟팅은 어떤 문제점이 있었는가? | 2007; Puchta and Fauser 2013; Voytas 2013; Endo and Toki 2014). 하지만 식물에서는 HR을 이용한GT가 이루어지는 빈도가 동물에 비해 매우 낮기 때문에 보편적으로 이용되기가 어려웠다(Lee et al. 1990; Terada et al. | |
Forward genetics의 대안으로 대두된 것은? | 그러나 변이된 식물로부터 유전자의 변이를 찾는 forward genetics는 모래밭에서 바늘 찾기와 같이 많은 노력과 시간이 필요하다. Forward genetics의 대안으로 유전자 분석을 먼저 시도하여 표현형을 밝히는 reverse genetics이 대두되었다. 대표 기술로는 특정 유전자의 발현을 억제하여 목표유전자의 변이를 유발하는 RNA interference (RNAi)가 있다(Schwab et al. |
Abe K, Osakabe K, Nakayama S, et al (2005) Arabidopsis RAD51C Gene Is Important for Homologous Recombination in Meiosis and Mitosis. Plant Physiol 139:896-908
Alonso JM, Stepanova AN, Leisse TJ, et al (2003) Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science 301:653-657
An S, Park S, Jeong D-H, et al (2003) Generation and Analysis of End Sequence Database for T-DNA Tagging Lines in Rice. Plant Physiol 133:2040-2047
Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20:145-149
Belhaj K, Chaparro-Garcia A, Kamoun S, et al (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76-84
Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41-52
Cary LC, Goebel M, Corsaro BG, et al (1989) Transposon mutagenesis of baculoviruses: Analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172:156-169
Endo M, Ishikawa Y, Osakabe K, et al (2006a) Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. EMBO J 25:5579-5590
Endo M, Osakabe K, Ichikawa H, Toki S (2006b) Molecular Characterization of True and Ectopic Gene Targeting Events at the Acetolactate Synthase Gene in Arabidopsis. Plant Cell Physiol 47:372-379
Endo M, Osakabe K, Ono K, et al (2007) Molecular breeding of a novel herbicide-tolerant rice by gene targeting. Plant J 52:157-166
Endo M, Toki S (2014) Toward establishing an efficient and versatile gene targeting system in higher plants. Biocatal Agric Biotechnol 3:2-6
Fu Y, Foden JA, Khayter C, et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822-826
Gaj T, Gersbach CA, Barbas III CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397-405
Gao J, Wang G, Ma S, et al (2014) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99-110
Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78:742-752
Heyer W-D, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113-139
Hohn B, Puchta H (2003) Some like it sticky: targeting of the rice gene Waxy. Trends Plant Sci 8:51-53
Iida S, Terada R (2005) Modification of Endogenous Natural Genes by Gene Targeting in Rice and Other Higher Plants. Plant Mol Biol 59:205-219
Iida S, Terada R (2004) A tale of two integrations, transgene and T-DNA: gene targeting by homologous recombination in rice. Curr Opin Biotechnol 15:132-138
James C (2013) Global Status of Commercialized Biotech/GM Crops. ISAAA: Ithaca, NY., ISAAA Brief
Johnson RA, Gurevich V, Filler S, et al (2014) Comparative assessments of CRISPR-Cas nucleases' cleavage efficiency in planta. Plant Mol Biol 87:143-156
Kaufmann KB, Buning H, Galy A, et al (2013) Gene therapy on the move. EMBO Mol Med 5:1642-1661
Kaul MLH, Bhan DAK (1977) Mutagenic effectiveness and efficiency of EMS, DES and gamma-rays in rice. Theor Appl Genet 50:241-246
Kikuchi K, Abdel-Aziz HI, Taniguchi Y, et al (2009) Bloom DNA Helicase Facilitates Homologous Recombination between Diverged Homologous Sequences. J Biol Chem 284:26360-26367
Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci 93:1156-1160
Kwon Y-I, Abe K, Endo M, et al (2013) DNA replication arrest leads to enhanced homologous recombination and cell death in meristems of rice OsRecQl4 mutants. BMC Plant Biol 13:62
Kwon YI, Abe K, Osakabe K, et al (2012) Overexpression of OsRecQl4 and/or OsExo1 Enhances DSB-Induced Homologous Recombination in Rice. Plant Cell Physiol 53:2142-2152
Lee KY, Lund P, Lowe K, Dunsmuir P (1990) Homologous recombination in plant cells after Agrobacterium-mediated transformation. Plant Cell Online 2:415-425
Liang Z, Zhang K, Chen K, Gao C (2014) Targeted Mutagenesis in Zea mays Using TALENs and the CRISPR/Cas System. J Genet Genomics 41:63-68
Li J-F, Norville JE, Aach J, et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688-691
Li T, Liu B, Spalding MH, et al (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390-392
Liu Q, Segal DJ, Ghiara JB, Barbas CF (1997) Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci 94:5525-5530
Lusser M, Parisi C, Plan D, Rodriguez-Cerezo E (2012) Deployment of new biotechnologies in plant breeding. Nat Biotechnol 30:231-239
Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348-352
Moritoh S, Eun C-H, Ono A, et al (2012) Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation. Plant J 71:85-98
Nekrasov V, Staskawicz B, Weigel D, et al (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691-693
Nimonkar AV, Ozsoy AZ, Genschel J, et al (2008) Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci 105:16906-16911
Nishizawa-Yokoi A, Endo M, Osakabe K, et al (2014) Precise marker excision system using an animal-derived piggyBac transposon in plants. Plant J 77:454-463
Nishizawa-Yokoi A, Nonaka S, Saika H, et al (2012) Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice. New Phytol 196:1048-1059
Ono A, Yamaguchi K, Fukada-Tanaka S, et al (2012) A null mutation of ROS1a for DNA demethylation in rice is not transmittable to progeny. Plant J 71:564-574
Ozawa K, Wakasa Y, Ogo Y, et al (2012) Development of an Efficient Agrobacterium-Mediated Gene Targeting System for Rice and Analysis of Rice Knockouts Lacking Granule- Bound Starch Synthase (Waxy) and ${\beta}1$ ,2-Xylosyltransferase. Plant Cell Physiol 53:755-761
Paszkowski J, Baur M, Bogucki A, Potrykus I (1988) Gene targeting in plants. EMBO J 7:4021-4026
Puchta H, Fauser F (2013) Gene targeting in plants: 25 years later. Int J Dev Biol 57:629-637
Ran FA, Hsu PD, Lin C-Y, et al (2013) Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell 154:1380-1389
Remy S, Tesson L, Menoret S, et al (2010) Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res 19:363-371
Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80:1139-1150
Schuermann D, Molinier J, Fritsch O, Hohn B (2005) The dual nature of homologous recombination in plants. Trends Genet 21:172-181
Schwab R, Ossowski S, Riester M, et al (2006) Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis. Plant Cell Online 18:1121-1133
Shan Q, Wang Y, Chen K, et al (2013a) Rapid and Efficient Gene Modification in Rice and Brachypodium Using TALENs. Mol Plant sss162
Shan Q, Wang Y, Li J, et al (2013b) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686-688
Shukla VK, Doyon Y, Miller JC, et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437-441. 2
Singh SK, Roy S, Choudhury SR, Sengupta DN (2010) DNA repair and recombination in higher plants: insights from comparative genomics of arabidopsis and rice. BMC Genomics 11:443
Symington LS, Gautier J (2011) Double-Strand Break End Resection and Repair Pathway Choice. Annu Rev Genet 45:247-271
Tanaka S, Ishii C, Hatakeyama S, Inoue H (2010) High efficient gene targeting on the AGAMOUS gene in an Arabidopsis AtLIG4 mutant. Biochem Biophys Res Commun 396:289-293
Terada R, Johzuka-Hisatomi Y, Saitoh M, et al (2007) Gene Targeting by Homologous Recombination as a Biotechnological Tool for Rice Functional Genomics. Plant Physiol 144:846-856
Terada R, Nagahara M, Furukawa K, et al (2010) Cre-loxP mediated marker elimination and gene reactivation at the waxy locus created in rice genome based on strong positive –negative selection. Plant Biotechnol 27:29-37
Terada R, Urawa H, Inagaki Y, et al (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030-1034
Terns MP, Terns RM (2011) CRISPR-based adaptive immune systems. Curr Opin Microbiol 14:321-327
Townsend JA, Wright DA, Winfrey RJ, et al (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442-445
Voytas DF (2013) Plant Genome Engineering with Sequence- Specific Nucleases. Annu Rev Plant Biol 64:327-350
Wang Y, Yau Y-Y, Perkins-Balding D, Thomson JG (2010) Recombinase technology: applications and possibilities. Plant Cell Rep 30:267-285
Yamauchi T, Johzuka-Hisatomi Y, Fukada-Tanaka S, et al (2009) Homologous recombination-mediated knock-in targeting of the MET1a gene for a maintenance DNA methyltransferase reproducibly reveals dosage-dependent spatiotemporal gene expression in rice. Plant J 60:386-396
Zhang F, Maeder ML, Unger-Wallace E, et al (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci 107:12028-12033
Zhang Y, Zhang F, Li X, et al (2013) Transcription Activator-Like Effector Nucleases Enable Efficient Plant Genome Engineering. Plant Physiol 161:20-27
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.