$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"
쳇봇 이모티콘
안녕하세요!
ScienceON 챗봇입니다.
궁금한 것은 저에게 물어봐주세요.

논문 상세정보

초록

부정맥 분류를 위한 기존 연구들은 특정 ECG 데이터에 종속적으로 개발되었기 때문에 다른 환경에 적용할 경우 그 성능에 변화가 많아 임상 적용에 한계가 있다. 즉, 생체 신호의 특성상 개인 간의 차이가 있음에도 불구하고, 일반적인 ECG 신호의 판단규칙에 따라 진단을 수행하기 때문이다. 또한 이러한 대부분의 방법들은 P, Q, R, S, T 지점의 정확한 측정을 필요로 하며, 데이터의 가공 및 연산이 복잡하다. 따라서 이러한 문제점을 극복하기 위해서는 개인별 특성을 가진 ECG 데이터를 분석하여 최소한의 특징점을 추출함으로써 그에 따른 패턴을 분류하는 것이 필요하다. 본 연구에서는 이상 심전도와 같은 다양한 신호를 고려하여 Q, R, S 피크 변화에 따른 개인별 ECG 신호의 패턴 분석기법을 제안한다. 이를 위해 전처리를 통해 잡음이 제거된 심전도 신호에서 R파를 검출하고 Q, R, S의 진폭과 위상변화에 따른 8개의 특징점을 추출하였다. 이후 각 특징점의 피크 변화와 형태에 따른 ECG 신호를 분석하고 부정맥 유형에 따른 9가지 패턴을 정의하였다. 제안한 방법의 우수성을 입증하기 위해 43개의 MIT-BIH 레코드를 대상으로 Normal, PVC, PAC, LBBB, RBBB, Paced Beat의 각 패턴을 분석하였다. 실험결과 9가지 패턴에 대한 검출율은 93.72%로 우수하게 나타났다.

Abstract

Several algorithms have been developed to classify arrhythmia which rely on specific ECG(Electrocardiogram) database. Nevertheless personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. But it is difficult to detect the P and T wave signal because of person's individual difference. Therefore it is necessary to classify the pattern by analyzing personalized ECG signal and extracting minimal feature. Thus, QRS pattern Analysis of personalized ECG Signal by Q, R, S peak variability is presented in this paper. For this purpose, we detected R wave through the preprocessing method and extract eight feature by amplitude and phase variability. Also, we classified nine pattern in realtime through peak and morphology variability. PVC, PAC, Normal, LBBB, RBBB, Paced beat arrhythmia is evaluated by using 43 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 93.72% in QRS pattern detection classification.

질의응답 

키워드에 따른 질의응답 제공
핵심어 질문 논문에서 추출한 답변
각 차단
각 차단(BBB : Bundle Branch Block)이란 무엇인가?
우각이나 좌각의 전기전달이 차단되는 경우 심전도에 나타나는 현상

특히 조기심실수축(PVC : Premature Ventricular Contraction)과 조기심방수축(PAC : Premature Atrial Contraction)은 임상에서 발견될 수 있는 가장 흔한 부정맥으로 과거에 심장질환이 있었던 환자에게서 PVC의 발생은 심실빈맥과 같은 위험한 심장질환을 유발할 수 있으며, PAC는 뇌경색이나 전신 색전증의 합병증을 일으켜 질병 이환율과 사망율을 증가시킬 수 있다. 각 차단 (BBB : Bundle Branch Block)이란 우각이나 좌각의 전기전달이 차단되는 경우 심전도에 나타나는 현상으로 심방중격결손증 등 선천성 심장질환이 있는 경우 나타날 수 있으며 후천성 심장병으로 고혈압, 허혈성 심장질환이나 심근증 등의 시초에 나타날 수 있다. 따라서 PVC, PAC, BBB와 같은 부정맥의 조기 검출은 심장질환에 대한 예방과 추후 발생여부에 대한 기초조사로서 매우 중요하다[4,5].

성능이 변화하는 경우
분류 알고리즘이 다른 환경에서 분류하였을경우 성능이 변화하는 경우는 무엇 때문인가?
생체신호의 특성상 개인 간의 차이가 있음에도 불구하고, 대상 환자의 특성에 따른 신호 차이는 무시하고, 일반적인 ECG 신호의 판단규칙에 따라 진단을 수행함으로써 성능하락을 야기하기 때문이다

기존 방식은 분류 알고리즘이 MIT-BIH, AHA, CSE와 같은 표준 데이터베이스를 기반으로 하나, 특정 ECG 데이터에 종속적으로 개발되었기 때문에 다른 환경에서 분류하였을 경우 그 성능이 변화하는 경우가 많다. 이는 생체신호의 특성상 개인 간의 차이가 있음에도 불구하고, 대상 환자의 특성에 따른 신호 차이는 무시하고, 일반적인 ECG 신호의 판단규칙에 따라 진단을 수행함으로써 성능하락을 야기하기 때문이다. 또한 이러한 대부분의 방법들은 P, Q, R, S, T 지점의 정확한 측정을 필요로 하며, 데이터의 가공 및 연산이 복잡하여 실시간 적용에 어려움이 발생한다[6-8].

부정맥 분류를 위한 기존 연구
부정맥 분류를 위한 기존 연구들의 한계점은 무엇인가?
특정 ECG 데이터에 종속적으로 개발되었기 때문에 다른 환경에 적용할 경우 그 성능에 변화가 많아 임상 적용에 한계가 있다

부정맥 분류를 위한 기존 연구들은 특정 ECG 데이터에 종속적으로 개발되었기 때문에 다른 환경에 적용할 경우 그 성능에 변화가 많아 임상 적용에 한계가 있다. 즉, 생체 신호의 특성상 개인 간의 차이가 있음에도 불구하고, 일반적인 ECG 신호의 판단규칙에 따라 진단을 수행하기 때문이다.

질의응답 정보가 도움이 되었나요?

참고문헌 (11)

  1. A. D. C. Chan, M. M. Hamdy, A. Badre, and V. Badee, "Wavelet distance measure for person identification using electrocardiograms," IEEE Trans. Instrum. Meas., vol. 57, no. 2, pp. 248-253, Feb. 2008. 
  2. S. Chauhan, A. S. Arora, and A. Kaul, "A survey of emerging biometric modalites," Procedia Comput. Sci., vol. 2, pp. 213-218, 2010. 
  3. G. Wubbeler, M. Stavridis, D. Kreiseler, R.-D. Bousseljot, and C. Elster, "Verification of humans using the electrocardiogram," Pattern Recognit.Lett., vol. 28, pp. 1172-1175, 2007. 
  4. S. Chauhan, A. S. Arora, and A. Kaul, "A survey of emerging biometric modalites," Procedia Comput. Sci., vol. 2, pp. 213-218, 2010. 
  5. G. Wubbeler, M. Stavridis, D. Kreiseler, R.-D. Bousseljot, and C. Elster, "Verification of humans using the electrocardiogram," Pattern Recognit.Lett., vol. 28, pp. 1172-1175, 2007. 
  6. S. A. Israel, J. M. Irvine, A. Cheng, M. D. Wiederhold, and B. K. Wiederhold, "ECG to identify individuals," Pattern Recognit., vol. 38, no. 1,pp. 133-142, 2005. 
  7. Beuchee A, Pladys P, Senhadji L, Betremieux P, Carre F. "Beat-to-beat blood pressure variability and patent ductus arteriosus in ventilated, premature infants", Pflugers Arch, 446:154-160. 2003. 
  8. Awdah Al-Hazimi, Nabil Al-Ama, Ahmad Syiamic, Reem Qosti, and Khidir Abdel-Galil, "Time domain analysis of heart rate variability in diabetic patients with and without autonomic neuropathy," Annals of Saudi Medicine, 22 (5-6), pp. 400-402. 2002. 
  9. Ik-Sung Cho et al., "Baseline Wander Removing Method Based on Morphological Filter for Efficient QRS Detection," Journal of KIICE, vol. 17, no. 1, 2013, pp.166-174. 
  10. Ik-Sung Cho, Hyeog-Soong Kwon, "Efficient QRS Detection and PVC Classification based on Profiling Method," Journal of KIICE, vol. 17, no. 4, 2013, pp.705-711. 
  11. Ik-Sung Cho et al., "Arrhythmia Classification based on Binary Coding using QRS Feature Variability," Journal of KIICE, vol. 17, no. 8, 2013, pp.1947-1954. 

이 논문을 인용한 문헌 (0)

  1. 이 논문을 인용한 문헌 없음

문의하기 

궁금한 사항이나 기타 의견이 있으시면 남겨주세요.

Q&A 등록

원문보기

원문 PDF 다운로드

  • ScienceON :

원문 URL 링크

원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다. 원문복사서비스 안내 바로 가기

상세조회 0건 원문조회 0건

이 논문과 연관된 기능

DOI 인용 스타일

"" 핵심어 질의응답