$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

이온교환막 공정 및 응용 연구동향
Research Trends in Ion Exchange Membrane Processes and Practical Applications 원문보기

공업화학 = Applied chemistry for engineering, v.26 no.1, 2015년, pp.1 - 16  

김득주 (경상대학교) ,  정문기 (경상대학교) ,  남상용 (경상대학교)

초록
AI-Helper 아이콘AI-Helper

본 리뷰에서는 에너지분야 응용을 위해 사용된 이온교환막을 이용한 분리막 공정에 대하여 정리하였다. 이온교환막은 기능, 균일상, 불균일상과 같은 형태, 사용된 고분자의 종류에 따라 구분되었으며, 양이온 및 음이온 교환막을 제조하기 위한 다양한 방법에 대하여 논문을 참조하여 정리하였다. 이온교환막을 제조하기 위한 최신 연구결과 동향이 보고되었으며, 본 리뷰에서는 분리막의 제조 및 발전되어온 내용과, 분리막을 미래지향적 기술에 사용하기 위한 잠재적 응용분야에 대하여 논의하였다.

Abstract AI-Helper 아이콘AI-Helper

In this review, we summarized some of membrane processes using the ion exchange membrane typically used in energy applications. Ion exchange membranes are classified according to their functions, formations (e.g. heterogeneous, homogeneous), and polymer type. Furthermore, various methods to prepare ...

주제어

참고문헌 (96)

  1. S. B. Yun and Y. T. Lee, Effect of addition of cosolvent $\gamma$ --butyrolactone on morphology of polysulfone hollow fiber membranes, Appl. Chem. Eng., 25, 274-280 (2014). 

  2. S. M. Hosseini, S. S. Madaeni, A. R. Heidari, and A. Amirimehr, Preparation and characterization of ion-selective polyvinyl chloride based heterogeneous cation exchange membrane modified by magnetic iron-nickel oxide nanoparticles, Desalination, 284, 191-199 (2012). 

  3. R. K. Nagarale, G. S. Gohil, and V. K. Shahi, Recent developments on ion-exchange membranes and electro-membrane processes, Adv. Colloid Interface Sci., 119, 97-130 (2006). 

  4. K. K. Lee, T. H. Kim, T. S. Hwang, and Y. T. Hong, Novel Sulfonated Poly(arylene ether sulfone) Composite Membranes Containing Tetraethyl Orthosilicate (TEOS) for PEMFC Application, Membr. J., 20, 278-289 (2010). 

  5. Q. Luo, H. Zhang, J. Chen, D. You, C. Sun, and Y. Zhang, Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery, J. Membr. Sci., 325, 553-558 (2008). 

  6. V. Compan, E. Riande, F. J. Fernandez-Carretero, N. P. Berezina, and A. R. Sytcheva, Influence of polyaniline intercalations on the conductivity and permselectivity of perfluorinated cation-exchange membranes, J. Membr. Sci., 318, 255-263 (2008). 

  7. A. G. Kannan, N. R. Choudhury, and N. K. Dutta, In situ modification of $Nafion^{(R)}$ membranes with phospho-silicate for improved water retention and proton conduction, J. Membr. Sci., 333, 50-58 (2009). 

  8. C. Barth, M. C. Goncalves, A. T. N. Pires, J. Roeder, and B. A. Wolf, Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance, J. Membr. Sci., 169, 287-299 (2000). 

  9. J. F. Blanco, Q. T. Nguyen, and P. Schaetzel, Novel hydrophilic membrane materials: sulfonated polyethersulfone Cardo, J. Membr. Sci., 186, 267-279 (2001). 

  10. B. Piluharto, V. Suendo, T. Ciptati, and C. L. Radiman, Strong correlation between membrane effective fixed charge and proton conductivity in the sulfonated polysulfone cation-exchange membranes, Ionics, 17, 229-238 (2011). 

  11. C. Klaysom, B. P. Ladewig, G. Q. Lu, and L. Wang, Preparation and characterization of sulfonated polyethersulfone for cation-exchange membranes, J. Membr. Sci., 368, 48-53 (2011). 

  12. S. Zhou, J. Kim, and D. Kim, Cross-linked poly (ether ether ketone) membranes with pendant sulfonic acid groups for fuel cell applications, J. Membr. Sci., 348, 319-325 (2010). 

  13. W. Wei, H. Zhang, X. Li, Z. Mai, and H. Zhang, Poly (tetrafluoroethylene) reinforced sulfonated poly (ether ether ketone) membranes for vanadium redox flow battery application, J. Power Sources, 208, 421-425 (2012). 

  14. Y. Zhang, J. Li, H. Zhang, S. Zhang, and X. Huang, Sulfonated polyimide membranes with different non-sulfonated diamines for vanadium redox battery applications, Electrochim. Acta, 150, 114-121 (2014). 

  15. T. Yasuda, S. I. Nakamura, Y. Honda, K. Kinugawa, S. Y. Lee, and M. Watanabe, Effects of Polymer Structure on Properties of Sulfonated Polyimide/Protic Ionic Liquid Composite Membranes for Nonhumidified Fuel Cell Applications, ACS Appl. Materials & Interfaces, 4, 1783-1790 (2012). 

  16. K. Yaguchi, K. Chen, N. Endo, M. Higa, and K. I. Okamoto, Crosslinked membranes of sulfonated polyimides for polymer electrolyte fuel cell applications, J. Power Sources, 195, 4676-4684 (2010). 

  17. G. Couture, A. Alaaeddine, F. Boschet, and B. Ameduri, Polymeric materials as anion-exchange membranes for alkaline fuel cells, Prog. Polym. Sci., 36, 1521-1557 (2011). 

  18. G. Merle, M. Wessling, and K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review, J. Membr. Sci., 377, 1-35 (2011). 

  19. J. H. Hong, Preparation and characterization of weak-base anion exchange membrane, J. Ind. Eng. Chem., 17, 208-212 (2011). 

  20. M. Y. Kim. K. J. Kim, and H. Kang, Preparation of Anion Exchange Membranes of Cross-linked Poly((vinylbenzyl) trimethylammonium chloride-2-hydroxyethyl methacrylate)/poly(vinyl alcohol), Appl. Chem. Eng., 21, 621-626 (2010). 

  21. N. T. Rebeck, Y. Li, and D. M. Knauss, Poly (phenylene oxide) copolymer anion exchange membranes, J. Polym. Sci. Pt. B-Polym. Phys., 51, 1770-1778 (2013). 

  22. Y. Xiong, Q. L. Liu, Q. G. Zhang, and A. M. Zhu, Synthesis and characterization of cross-linked quaternized poly (vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells, J. Power Sources, 183, 447-453 (2008). 

  23. Y. Cao, H. J. Wei, and Z. N. Xia, Advances in microwave assisted synthesis of ordered mesoporous materials, Trans. Nonferrous Met. Soc. China, 19, s656-s664 (2009). 

  24. J. H. Park, S. Y. Bong, C. H. Ryu, and G. J. Hwang, Study on the preparation of polyvinyl Chloride Anion Exchange Membrane as a Separator in the Alkaline Water Electrolysis, Membr. J., 23, 469-474 (2013). 

  25. T. Sata, T. Yamaguchi, and K. Matsusaki, Effect of hydrophobicity of ion exchange groups of anion exchange membranes on permselectivity between two anions, J. Phys. Chem. A, 99, 12875-12882 (1995). 

  26. J. R. Varcoe and R. C. T. Slade, Prospects for Alkaline Anion exchange Membranes in Low Temperature Fuel Cells, Fuel cells, 5, 187-200 (2005). 

  27. R. Patel, S. J. Im, Y. T. Ko, J. H. Kim, and B. R. Min, Preparation and characterization of proton conducting polysulfone grafted poly (styrene sulfonic acid) polyelectrolyte membranes, J. Ind. Eng. Chem., 15, 299-303 (2009). 

  28. M. D. Guiver, G. P. Robertson, S. Rowe, S. Foley, Y. S. Kang, H. C. Park, J. Won, and H. N. L. Thi, Modified polysulfones. IV. Synthesis and characterization of polymers with silicon substituents for a comparative study of gas transport properties, J. Polym. Sci. Pol. Chem., 39, 2103-2124 (2001). 

  29. J. Yan and M. A. Hickner, Anion exchange membranes by bromination of benzylmethyl-containing poly (sulfone) s, Macromolecules, 43, 2349-2356 (2010). 

  30. Y. Zhao, J. Pan, H. Yu, D. Yang, J. Li, L. Zhuang, Z. Shao, and B. Yi, Quaternary ammonia polysulfone-PTFE composite alkaline anion exchange membrane for fuel cells application, Int. J. Hydrogen Energy., 38, 1983-1987 (2013). 

  31. N. Li, Q. Zhang, C. Wang, Y. M. Lee, and M. D. Guiver, Phenyltrimethylammonium Functionalized Polysulfone Anion Exchange Membranes, Macromolecules, 45, 2411-2419 (2012). 

  32. G. Nie, X. Li, J. Tao, W. Wu, and S. Liao, Alkali resistant cross-linked poly (arylene ether sulfone) s membranes containing aromatic side-chain quaternary ammonium groups, J. Membr. Sci., 474, 187-195 (2015). 

  33. X. Huang, X. Ou, D. Huang, F. Ding, and Z. Chen, Cross-Linked Polyether Ether Ketone-g-2-(dimethylamino) Ethyl Methacrylate for Anion Exchange Membrane with High Ion Exchange Capacities and OH- permeability, Adv. Sci. Lett., 5, 530-534 (2012). 

  34. D. H. Lee, S. J. Kim, S. Y. Nam, and H. J. Kim, Synthesis and Ion Conducting Properties of Anion Exchange Membranes based on PBI Copolymers for Alkaline Fuel Cells, Membr. J., 20, 217-221 (2010). 

  35. Y. S. Li, T. S. Zhao, and W. W. Yang, Measurements of water uptake and transport properties in anion-exchange membranes, Int. J. Hydrogen Energy., 35, 5656-5665 (2010). 

  36. H. J. Lee, J. Choi, J. Y. Han, H. J. Kim, Y. E. Sung, H. Kim, D. Henkensmeier, E. A. Cho, J. H. Jang, and S. J. Yoo, Synthesis and characterization of poly (benzimidazolium) membranes for anion exchange membrane fuel cells, Polym. Bull., 70, 2619-2631 (2013). 

  37. L. C. Jheng, S. L. C. Hsu, B. Y. Lin, and Y.-l. Hsu, Quaternized polybenzimidazoles with imidazolium cation moieties for anion exchange membrane fuel cells, J. Membr. Sci., 460, 160-170 (2014). 

  38. D. Henkensmeier, H. Cho, M. Brela, A. Michalak, A. Dyck, W. Germer, N. M. H. Duong, J. H. Jang, H.-J. Kim, and N.-S. Woo, Anion conducting polymers based on ether linked polybenzimidazole (PBI-OO), Int. J. Hydrogen Energy., 39, 2842-2853 (2014). 

  39. M. A. Khan, M. Kumar, and Z. A. Alothman, Preparation and characterization of organic-inorganic hybrid anion-exchange membranes for electrodialysis, J. Ind. Eng. Chem., 21 723-730 (2015). 

  40. R. P. Pandey, A. K. Thakur, and V. K. Shahi, Stable and efficient composite anion-exchange membranes based on silica modified poly (ethyleneimine) poly (vinyl alcohol) for electrodialysis, J. Membr. Sci., 469, 478-487 (2014). 

  41. T. Xu, Ion exchange membranes: state of their development and perspective, J. Membr. Sci., 263, 1-29 (2005). 

  42. M. M. Nasef and E. S.A. Hegazy, Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films, Prog. Polym. Sci., 29, 499-561 (2004). 

  43. H. Strathmann, Electromembrane processes: Basic aspects and applications, Elsevier Science: Amsterdam, pp. 391-429. 

  44. J. H. Choi, S. H. Kim, and S. H. Moon, Heterogeneity of ion-exchange membranes: the effects of membrane heterogeneity on transport properties, J. Colloid Interface Sci., 241, 120-126 (2001). 

  45. K. Kim, P. Heo, T. Ko, and J. C. Lee, Semi-interpenetrating network electrolyte membranes based on sulfonated poly (arylene ether sulfone) for fuel cells at high temperature and low humidity conditions, Electrochem. Commun., 48, 44-48 (2014). 

  46. J. Wang, R. He, and Q. Che, Anion exchange membranes based on semi-interpenetrating polymer network of quaternized chitosan and polystyrene, J. Colloid Interface Sci., 361, 219-225 (2011). 

  47. Y. H. Kwon, S. C. Kim, and S. Y. Lee, Nanoscale phase separation of sulfonated poly (arylene ether sulfone)/poly (ether sulfone) semi-IPNs for DMFC membrane applications, Macromolecules, 42, 5244-5250 (2009). 

  48. B. Auclair, V. Nikonenko, C. Larchet, M. Metayer, and L. Dammak, Correlation between transport parameters of ion-exchange membranes, J. Membr. Sci., 195, 89-102 (2002). 

  49. D. J. Kim, M. J. Jo, and S. Y. Nam, A review of polymer nanocomposite electrolyte membranes for fuel cell application, J. Ind. Eng. Chem., 21, 36-52 (2015). 

  50. J. W. Bae, Y. H. Cho, Y. E. Sung, K. Shin, and J. Y. Jho, Performance enhancement of polymer electrolyte membrane fuel cell by employing line-patterned Nafion membrane, J. Ind. Eng. Chem., 18, 876-879 (2012). 

  51. D. G. Kang, B. K. Hur, D. W. Lee, and K. H. Seo. Aging Property Studies on Rubber Gasket for Polymer Electrolyte Membrane Fuel Cell Stack, Appl. Chem. Eng., 22, 149-154 (2011). 

  52. S. Kim and I. Hong, Membrane performance comparison in a proton exchange membrane fuel cell (PEMFC) stack, J. Ind. Eng. Chem., 16, 901-905 (2010). 

  53. H. B. Park and Y. M. Lee, Polymer Electrolyte Membranes for Fuel Cell, Appl. Chem. Eng., 13, 1-11 (2002). 

  54. S. U. Kim, D. M. Yu, T. H. Kim, Y. T. Hong, S. Y. Nam, and J. H. Choi, Effect of sulfonated poly (arylene ether sulfone) binder on the performance of polymer electrolyte membrane fuel cells, J. Ind. Eng. Chem., In press (2014). 

  55. D. J. Kim, H. Y. Hwang, S. B. Jung, and S. Y. Nam, Sulfonated poly (arylene ether sulfone)/Laponite-SO3H composite membrane for direct methanol fuel cell, J. Ind. Eng. Chem., 18, 556-562 (2012). 

  56. D. J. Kim and S. Y. Nam, Characterization of Sulfonated Silica Nanocomposite Electrolyte Membranes for Fuel Cell, J. Nanosci. Nanotechnol., 14, 8961-8963 (2014). 

  57. D. J. Kim, H. Y. Hwang, and S. Y. Nam, Characterization of sulfonated poly (arylene ether sulfone)(SPAES)/silica-phosphate sol-gel composite membrane: Effects of the sol-gel composition, Macromol. Res., 21, 1194-1200 (2013). 

  58. D. J. Kim, H. J. Lee, and S. Y. Nam, Sulfonated poly (arylene ether sulfone) membranes blended with hydrophobic polymers for direct methanol fuel cell applications, Int. J. Hydrogen Energy., 39, 17524-17532 (2014). 

  59. H. S. Choi, J. C. Kim, S. H. Ryu, and G. J. Hwang, Research Review of the All Vanadium Redox-flow Battery for Large Scale Power Storage, Membrane Journal, 21, 107-117 (2011). 

  60. E. Sum and M. Skyllas-Kazacos, A study of the V (II)/V (III) redox couple for redox flow cell applications, J. Power Sources, 15, 179-190 (1985). 

  61. D. J. Kim and S. Y. Nam, Research Trend of Polymeric Ion Exchange Membrane for Vanadium Redox Flow Battery, Membr. J., 22, 285-300 (2012). 

  62. H. Huh, D. J. Kim, and S. Y. Nam, Proton conductivity and Methanol Permeabiliry of sulfonated poly(aryl ether sulfone)/Modified Graphene Hybrid Membranes, Membr. J., 21, 247-255 (2011). 

  63. S. G. Park, N. S. Kwak, C. W. Hwang, H. M. Park, and T. S. Hwang, Synthesis and characteristics of aminated vinylbenzyl chloride-co-styrene-co-hydroxyethyl acrylate anion-exchange membrane for redox flow battery applications, J. Membr. Sci., 423, 429-437 (2012). 

  64. S. Zhang, C. Yin, D. Xing, D. Yang, and X. Jian, Preparation of chloromethylated/quaternized poly (phthalazinone ether ketone) anion exchange membrane materials for vanadium redox flow battery applications, J. Membr. Sci., 363, 243-249 (2010). 

  65. C. G. Morandi, R. Peach, H. M. Krieg, and J. Kerres, Novel Imidazolium-Functionalized Anion-Exchange Polymer PBI Blend Membranes, J. Membr. Sci., 476, 256-263 (2015). 

  66. S. Wu, K. Zhang, X. Wang, Y. Jia, B. Sun, T. Luo, F. Meng, Z. Jin, D. Lin, and W. Shen, Enhanced adsorption of cadmium ions by 3D sulfonated reduced graphene oxide, Chem. Eng. J., 262, 1292-1302 (2015). 

  67. M. Wang, X. Liu, Y. X. Jia, and X. L. Wang, The Improvement of Comprehensive Transport Properties to Heterogeneous Cation Exchange Membrane by the Covalent Immobilization of Polyethyleneimine, Sep. Purif. Technol., 140, 69-76 (2015). 

  68. H. Farrokhzad, T. Kikhavani, F. Monnaie, S. N. Ashrafizadeh, G. Koeckelberghs, T. Van Gerven, and B. Van der Bruggen, Novel composite cation exchange films based on sulfonated PVDF for electromembrane separations, J. Membr. Sci., 474, 167-174 (2015). 

  69. J. G. Hong and Y. Chen, Evaluation of electrochemical properties and reverse electrodialysis performance for porous cation exchange membranes with sulfate-functionalized iron oxide, J. Membr. Sci., 473, 210-217 (2015). 

  70. H. Deng, Z. Wang, W. Zhang, B. Hu, and S. Zhang, Preparation and monovalent selective properties of multilayer polyelectrolyte modified cation exchange membranes, J. Appl. Polym. Sci., 132, 41488 (2015). 

  71. J. Ma, Z. Wang, D. Suor, S. Liu, J. Li, and Z. Wu, Temporal variations of cathode performance in air-cathode single-chamber microbial fuel cells with different separators, J. Power Sources, 272, 24-33 (2014). 

  72. J. Liu, G. M. Geise, X. Luo, H. Hou, F. Zhang, Y. Feng, M. A. Hickner, and B. E. Logan, Patterned ion exchange membranes for improved power production in microbial reverse-electrodialysis cells, J. Power Sources, 271, 437-443 (2014). 

  73. A. N. Filippov, E. Y. Safronova, and A. B. Yaroslavtsev, Theoretical and experimental investigation of diffusion permeability of hybrid MF-4SC membranes with silica nanoparticles, J. Membr. Sci., 471, 110-117 (2014). 

  74. J. Pan, L. Ge, X. Lin, L. Wu, B. Wu, and T. Xu, Cation exchange membranes from hot-pressed electrospun sulfonated poly (phenylene oxide) nanofibers for alkali recovery, J. Membr. Sci., 470, 479-485 (2014). 

  75. R. Valek and J. Zachovalova, Cation-exchange membrane modified by inorganic short fibres, Desalin. Water Treat., 1, 1-5 (2014). 

  76. L. Brozova, J. Krivcik, D. Nedela, V. Kysela, and J. zitka, The influence of activation of heterogeneous ion-exchange membranes on their electrochemical properties, Desalin. Water Treat., 1-5 (2014). 

  77. H. Yan, S. Xue, C. Wu, Y. Wu, and T. Xu, Separation of NaOH and NaAl(OH)4 in alumina alkaline solution through diffusion dialysis and electrodialysis, J. Membr. Sci., 469, 436-446 (2014). 

  78. B. Porras, V. Romero, and J. Benavente, Effect of acid/basic solutions contact on ion transport numbers and conductivity for an anion-exchange membrane, Desalin. Water Treat., 1-5 (2014). 

  79. S. M. Hosseini, S. Rafiei, A. R. Hamidi, A. R. Moghadassi, and S. S. Madaeni, Preparation and electrochemical characterization of mixed matrix heterogeneous cation exchange membranes filled with zeolite nanoparticles: Ionic transport property in desalination, Desalination, 351, 138-144 (2014). 

  80. K. J. Chae, K. Y. Kim, M. J. Choi, E. Yang, I. S. Kim, X. Ren, and M. Lee, Sulfonated polyether ether ketone (SPEEK)-based composite proton exchange membrane reinforced with nanofibers for microbial electrolysis cells, Chem. Eng. J., 254, 393-398 (2014). 

  81. L. Yang, B. Tang, and P. Wu, A novel proton exchange membrane prepared from imidazole metal complex and Nafion for low Humidity, J. Membr. Sci., 467, 236-243 (2014). 

  82. Z. Sun, X. Wei, H. Zhang, and X. Hu, Dechlorination of pentachlorophenol (PCP) in aqueous solution on novel Pd-loaded electrode modified with PPy-DBS composite film, Environ. Sci.Pollut. R., DOI 10.1007/s11356-014-3641-x (2014). 

  83. M. Arsalan, Binding nature of polystyrene and PVC 50: 50% with CP and NP 50: 50% ion exchangeable, mechanically and thermally stable membrane, J. Ind. Eng. Chem., 20, 3283-3291 (2014). 

  84. H. Farrokhzad, T. Van Gerven, and B. Van der Bruggen, Selective composite cation-exchange membrane based on S-PVDF, Desalin. Water Treat., 1-7 (2014). 

  85. A. R. Moghadassi, P. Koranian, S. M. Hosseini, M. Askari, and S. S. Madaeni, Surface modification of heterogeneous cation exchange membrane through simultaneous using polymerization of PAA and multi walled carbon nano tubes, J. Ind. Eng. Chem., 20, 2710-2718 (2013). 

  86. X. A. Walter, J. Greenman, and I. A. Ieropoulos, Intermittent load implementation in microbial fuel cells improves power performance, Bioresource Technol., 172, 365-372 (2014). 

  87. R. Ghalloussi, L. Chaabane, L. Dammak, and D. Grande, Ageing of ion-exchange membranes used in an electrodialysis for food industry: SEM, EDX, and limiting current investigations, Desalin. Water Treat., 10.1080/19443994.2014.968908, 1-6 (2014). 

  88. R. Zerdoumi, K. Oulmi, and S. Benslimane, Enhancement of counter- ion transport through ion-exchange membranes in electrodialytic processes, Desalin. Water Treat., 10.1080/19443994.2014.972734, 1-6 (2014). 

  89. M. Cherif, I. Mkacher, R. Ghalloussi, L. Chaabane, A. Ben Salah, K. Walha, L. Dammak, and D. Grande, Experimental investigation of neutralization dialysis in three-compartment membrane stack, Desalin. Water Treat., 10.1080/19443994.2014.968903, 1-9 (2014). 

  90. J. Krivcik, D. Nedela, J. Hadrava, and L. Brozova, Increasing selectivity of a heterogeneous ion-exchange membrane, Desalin. Water Treat., 10.1080/19443994.2014.980970, 1-7 (2014). 

  91. M. Ghahraman Afshar, G. A. Crespo, and E. Bakker, Counter electrode based on an ion-exchanger Donnan exclusion membrane for bioelectroanalysis, Biosens. Bioelectron., 61, 64-69 (2014). 

  92. S. Pandit, S. Khilari, K. Bera, D. Pradhan, and D. Das, Application of PVA-DDA polymer electrolyte composite anion exchange membrane separator for improved bioelectricity production in a single chambered microbial fuel cell, Chem. Eng. J., 257, 138-147 (2014). 

  93. F. T. Wandschneider, D. Finke, S. Grosjean, P. Fischer, K. Pinkwart, J. Tubke, and H. Nirschl, Model of a vanadium redox flow battery with an anion exchange membrane and a Larminie-correction, J. Power Sources, 272, 436-447 (2014). 

  94. U. Chatterjee, V. Bhadja, and S. K. Jewrajka, Effect of phase separation and adsorbed water on power consumption and current efficiency of terpolymer conetwork-based anion exchange membrane, J. Mater. Chem. A, 2, 16124-16134 (2014). 

  95. M. Zarrinkhameh, A. Zendehnam, and S. M. Hosseini, Electrochemical, morphological and antibacterial characterization of PVC based cation exchange membrane modified by zinc oxide nanoparticles, J. Polymer Res., 20, 1-9 (2013). 

  96. K. M. Lee, J. Y. Woo, B. C. Jee, Y. K. Hwang, C. H. Yun, S. B. Moon, J. H. Chung, and A. S. Kang, Effect of cross-linking agent and heteropolyacid (HPA) contents on physicochemical characteristics of covalently cross-linked sulfonated poly (ether ether ketone)/HPAs composite membranes for water electrolysis, J. Ind. Eng. Chem., 17, 657-666 (2011). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로