$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

에너지용 이온 교환 복합막 최근 연구 개발 동향
Recent Developments in Ion-Exchange Nanocomposite Membranes for Energy Applications 원문보기

멤브레인 = Membrane Journal, v.26 no.6, 2016년, pp.432 - 448  

황두성 (시카고 일리노이 주립대학교 화학공학과) ,  티파니 청 (시카고 일리노이 주립대학교 화학공학과) ,  통슈아이 왕 (시카고 일리노이 주립대학교 화학공학과) ,  김상일 (시카고 일리노이 주립대학교 화학공학과)

초록
AI-Helper 아이콘AI-Helper

최근 이온 교환 고분자 전해질 막을 활용한 고효율 에너지 전환 및 저장 장치에 대한 연구가 활발히 이루어지고 있다. 고분자 전해질 연료전지, 레독스 흐름전지역전기투석 등 다양한 에너지 시스템에서 에너지 효율 향상을 위해 이온교환 전해질 막의 양/음이온의 선택적 수송 거동이 중요시되고 있다. 본 총설은 각각의 고효율 전해질 전지 시스템에 따라 요구되는 다양한 이온 교환막의 선택적 양/음이온 투과 거동의 한계점을 고찰하고, 한계를 극복하기 위한 다양한 구조의 고분자 이온 교환 복합막의 장점 및 단점을 정리하였다. 고분자 가교법 및 다공성 지지체 복합막 이외에 다양한 구조의 신규다공성 무기 나노입자를 유-무기 이온교환 복합막에 도입하는 시도가 이루어지고 있는 동시에, 이온 선택도 향상을 위한 다양한 형태의 표면 개질 방법이 개발되고 있으며, 이를 통해 이온 교환 복합막의 선택적 양/음이온 거동의 한계를 극복하는 전략을 제시하고 있다.

Abstract AI-Helper 아이콘AI-Helper

In the last decade, various types of energy harvesting and conversion systems based on ion exchange membranes (IEMs) have been developed for eco-friendly power generation and energy-grid systems. In these membrane-based energy systems, high ion selectivity and conductivity properties of IEMs are cri...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • This review investigates several types of ion exchange composite membranes to improve selective ion transport properties to overcome the trade-off limitations for energy conversion and harvesting systems. Several composite membranes fabricated using various nano-sized particles such as metal oxide nanoparticles[14], porous carbon particles[15], and polymers[3] will be discussed.
  • While this review article doesn’t introduce detailed results from every paper published in the area, this overview represents research trends in modifying IEMs to improve their ion transport properties.
본문요약 정보가 도움이 되었나요?

참고문헌 (101)

  1. E. D. Williams, "ARPA-E: First seven years, A sampling of project outcomes", the Advanced Research Project Agency for Energy (ARPA-E), the United States (2016). 

  2. D. Papageorgopoulos, "2016 Annual Merit Review Proceedings Hydrogen and Fuel Cells Program Plenary", The Department of Energy (DOE), The United State (2016). 

  3. C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium- temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Prog. Polym. Sci., 36, 1443 (2011). 

  4. R. M. Darling, K. G. Gallagher, J. A. Kowalski, S. Ha, and F. R. Brushett, "Pathways to low- cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries", Energy Environ. Sci., 7, 3459 (2014). 

  5. M. Skyllas-Kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, and M. Saleem, "Progress in flow battery research and development. journal of the electrochemical society", J. Electochem. Soc., 158, R55 (2011). 

  6. B. E. Logan and M. Elimelech, "Membrane-based processes for sustainable power generation using water", Nature, 488, 313 (2012). 

  7. R. Darling, K. Gallagher, W. Xie, L. Su, and F. Brushett, "Transport property requirements for flow battery separators", J. Electrochem. Soc., 163, A5029 (2016). 

  8. K. A. Mauritz and R. B. Moore, "State of understanding of nafion", Chem. Rev., 104, 4535 (2004). 

  9. G. M. Geise, M. A. Hickner, and B. E. Logan, "Ionic resistance and permselectivity tradeoffs in anion exchange membranes", ACS Appl. Mater. Interfaces, 5, 10294 (2013). 

  10. P. Dllugolecki, K. Nymeijer, S. Metz, and M. Wessling, "Current status of ion exchange membranes for power generation from salinity gradients", J. Membr. Sci., 319, 214 (2008). 

  11. Z. Qi, and A. Kaufman, "Open circuit voltage and methanol crossover in DMFCs", J. Power Sources, 110, 177 (2002). 

  12. A. Daniilidis, D. A. Vermaas, R. Herber, and K. Nijmeijer, "Experimentally obtainable energy from mixing river water, seawater or brines with reverse electrodialysis", Renew. Energy, 64, 123 (2014). 

  13. S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, "Review of the proton exchange membranes for fuel cell applications", Int. J. Hydrogen Energy, 35, 9349 (2010). 

  14. E. Bakangura, L. Wu, L. Ge, Z. Yang, and T. Xu, "Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives", Prog. Polym. Sci., 57, 103 (2016). 

  15. C. Laberty-Robert, K. Valle, F. Pereira, and C. Sanchez, "Design and properties of functional hybrid organic-inorganic membranes for fuel cells", Chem. Soc. Rev., 40, 961 (2011). 

  16. K.-D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, "Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology", Chem. Rev., 104, 4637 (2004). 

  17. R. Souzy and B. Ameduri, "Functional fluoropolymers for fuel cell membranes", Prog. Polym. Sci., 30, 644 (2005). 

  18. K. D. Kreuer, "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells", J. Membr. Sci., 185, 29 (2001). 

  19. B. Bae, K. Miyatake, and M. Watanabe, "Effect of the hydrophobic component on the properties of sulfonated poly(arylene ether sulfone)s", Macromolecules, 42, 1873 (2009). 

  20. Y. S. Kim, M. A. Hickner, L. Dong, B. S. Pivovar, and J. E. McGrath, "Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: composition and morphology effects on the methanol permeability", J. Membr. Sci., 243, 317 (2004). 

  21. D. S. Phu, C. H. Lee, C. H. Park, S. Y. Lee, and Y. M. Lee, "Synthesis of crosslinked sulfonated poly(phenylene sulfide sulfone nitrile) for direct methanol fuel cell applications", Macromol. Rapid Commun., 30, 64 (2009). 

  22. Z. Bai, J. A. Shumaker, M. D. Houtz, P. A. Mirau, and T. D. Dang, "Fluorinated poly(arylenethioethersulfone) copolymers containing pendant sulfonic acid groups for proton exchange membrane materials", Polymer, 50, 1463 (2009). 

  23. K. H. Lee, S. Y. Lee, D. W. Shin, C. Wang, S.-H. Ahn, K.-J. Lee, M. D. Guiver, and Y. M. Lee, "Structural influence of hydrophobic diamine in sulfonated poly(sulfide sulfone imide) copolymers on medium temperature PEM fuel cell", Polymer, 55, 1317 (2014). 

  24. Y. Yin, O. Yamada, Y. Suto, T. Mishima, K. Tanaka, H. Kita, and K.-i. Okamoto, "Synthesis and characterization of proton-conducting copolyimides bearing pendant sulfonic acid groups", J. Polym. Sci. Part A Polym. Chem., 43, 1545 (2005). 

  25. Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, "High temperature proton exchange membranes based on polybenzimidazoles for fuel cells", Prog. Polym. Sci., 34, 449 (2009). 

  26. N. Li and M. D. Guiver, "Ion transport by nanochannels in ion-containing aromatic copolymers", Macromolecules, 47, 2175 (2014). 

  27. T. J. Peckham and S. Holdcroft, "Structure-morphology- property relationships of non- perfluorinated proton-conducting membranes", Adv. Mater., 22, 4667 (2010). 

  28. K.-D. Kreuer, A. Rabenau, and W. Weppner, "Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors", Angew. Chemie Int. Ed., 21, 208 (1982). 

  29. K.-D. Kreuer and G. Portale, "A critical revision of the nano-morphology of proton conducting ionomers and polyelectrolytes for fuel cell applications", Adv. Funct. Mater., 23, 5390 (2013). 

  30. J. Veerman, R. M. de Jong, M. Saakes, S. J. Metz, and G. J. Harmsen, "Reverse electrodialysis: Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density", J. Membr. Sci., 343, 7 (2009). 

  31. M. Tedesco, A. Cipollina, A. Tamburini, and G. Micale, "Towards 1 kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines", J. Membr. Sci., 522, 226 (2017). 

  32. E. Fontananova, D. Messana, R. A. Tufa, I. Nicotera, V. Kosma, E. Curcio, W. van Baak, E. Drioli, and G. Di Profio, "Effect of solution concentration and composition on the electrochemical properties of ion exchange membranes for energy conversion", J. Power Sources, 340, 282 (2017). 

  33. E. Fontananova, W. Zhang, I. Nicotera, C. Simari, W. van Baak, G. Di Profio, E. Curcio, and E. Drioli, "Probing membrane and interface properties in concentrated electrolyte solutions", J. Membr. Sci., 459, 177 (2014). 

  34. B. Schwenzer, J. Zhang, S. Kim, L. Li, J. Liu, and Z. Yang, "Membrane development for vanadium redox flow batteries", ChemSusChem, 4, 1388 (2011). 

  35. D. J. Kim and S. Y. Nam, "Research trend of polymeric ion-exchange membrane for vanadium redox flow battery", Membr. J., 22, 385 (2012). 

  36. Q. Luo, H. Zhang, J. Chen, D. You, C. Sun, and Y. Zhang, "Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery", J. Membr. Sci., 325, 553 (2008). 

  37. Z. Mai, H. Zhang, X. Li, C. Bi, and H. Dai, "Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application", J. Power Sources, 196, 482 (2011). 

  38. S. Kim, J. Yan, B. Schwenzer, J. Zhang, L. Li, J. Liu, Z. Yang, and M. A. Hickner, "Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries", Electrochem. Commun., 12, 1650 (2010). 

  39. B. Kosmala and J. Schauer, "Ion-exchange membranes prepared by blending sulfonated poly(2,6- dimethyl-1,4-phenylene oxide) with polybenzimidazole", J. Appl. Polym. Sci., 85, 1118 (2002). 

  40. C. Hasiotis, V. Deimede, and C. Kontoyannis, "New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole", Electrochim. Acta., 46, 2401 (2001). 

  41. Y. T. Hong, C. H. Lee, H. S. Park, K. A. Min, H. J. Kim, S. Y. Nam, and Y. M. Lee, "Improvement of electrochemical performances of sulfonated poly(arylene ether sulfone) via incorporation of sulfonated poly(arylene ether benzimidazole)", J. Power Sources, 175, 724 (2008). 

  42. T. Yamaguchi, F. Miyata, and S. Nakao, "Polymer electrolyte membranes with a pore- filling structure for a direct methanol fuel cell", Adv. Mater., 15, 1198 (2003). 

  43. M.-S. Lee, T. Kim, S.-H. Park, C.-S. Kim, and Y.-W. Choi, "A highly durable cross-linked hydroxide ion conducting pore-filling membrane", J. Mater. Chem., 22, 13928 (2012). 

  44. J. Xi, Z. Wu, X. Teng, Y. Zhao, L. Chen, and X. Qiu, "Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries", J. Mater. Chem., 18, 1232 (2008). 

  45. J. G. Austing, C. N. Kirchner, L. Komsiyska, and G. Wittstock, "Layer-by-layer modification of Nafion membranes for increased life-time and efficiency of vanadium/air redox flow batteries", J. Membr. Sci., 510, 259 (2016). 

  46. J.-J. Woo, S.-J. Seo, S.-H. Yun, R.-Q. Fu, T.-H. Yang, and S.-H. Moon, "Enhanced stability and proton conductivity of sulfonated polystyrene/PVC composite membranes through proper copolymerization of styrene with a-methylstyrene and acrylonitrile", J. Membr. Sci., 363, 80 (2010). 

  47. J. Kerres, A. Ullrich, F. Meier, and T. Haring, "Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells", Solid State Ion., 125, 243 (1999). 

  48. J. Kerres, W. Cui, and M. Junginger, "Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU crosslinked PSU blend membranes by alkylation of sulfinate groups with dihalogenoalkanes", J. Membr. Sci., 139, 227 (1998). 

  49. S. D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G. P. Robertson, and M. D. Guiver, "Proton conducting membranes based on crosslinked sulfonated poly(ether ether ketone) (SPEEK)", J. Membr. Sci., 233, 93 (2004). 

  50. N. R. Kang, S. Y. Lee, D. W. Shin, D. S. Hwang, K. H. Lee, D. H. Cho, J. H. Kim, and Y. M. Lee, "Effect of end-group cross-linking on transport properties of sulfonated poly(phenylene sulfide nitrile)s for proton exchange membranes", J. Power Sources, 307, 834 (2016). 

  51. S. Y. Lee, N. R. Kang, D. W. Shin, C. H. Lee, K.-S. Lee, M. D. Guiver, N. Li, and Y. M. Lee, "Morphological transformation during cross-linking of a highly sulfonated poly(phenylene sulfide nitrile) random copolymer", Energy Environ. Sci., 5, 9795 (2012). 

  52. E. Guler, Y. Zhang, M. Saakes, and K. Nijmeijer, "Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis", ChemSusChem., 5, 2262 (2012). 

  53. W. H. Lee, K. H. Lee, D. W. Shin, D. S. Hwang, N. R. Kang, D. H. Cho, J. H. Kim, and Y. M. Lee, "Dually cross-linked polymer electrolyte membranes for direct methanol fuel cells", Power Sources, 282, 211 (2015). 

  54. B. Han, J. Pan, S. Yang, M. Zhou, J. Li, A. Sotto Diaz, B. Van der Bruggen, C. Gao, and J. Shen, "Novel composite anion exchange membranes based on quaternized polyepichlorohydrin for electromembrane application", Ind. Eng. Chem. Res., 55, 7171 (2016). 

  55. J. B. Ballengee and P. N. Pintauro, "Preparation of nanofiber composite proton-exchange membranes from dual fiber electrospun mats", J. Membr. Sci., 442, 187 (2013). 

  56. J. B. Ballengee and P. N. Pintauro, "Composite fuel cell membranes from dual-nanofiber electrospun mats", Macromolecules, 44, 7307 (2011). 

  57. D.-H. Kim and M.-S. Kang, "Preparation and characterizations of ionomer-coated pore-filled ion-exchange membranes for reverse electrodialysis", Membr. J., 26, 43 (2016). 

  58. H. Jung, K. Fujii, T. Tamaki, H. Ohashi, T. Ito, and T. Yamaguchi, "Low fuel crossover anion exchange pore-filling membrane for solid-state alkaline fuel cells", J. Membr. Sci., 373, 107 (2011). 

  59. B. P. Tripathi and V. K. Shahi, "Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications", Prog. Polym. Sci., 36, 945 (2011). 

  60. M. Watanabe, H. Uchida, and M. Emori, "Polymer electrolyte membranes incorporated with nanometer-size particles of Pt and/or metal-oxides: Experimental analysis of the self-humidification and suppression of gas-crossover in fuel cells", J. Phys. Chem. B, 102, 3129 (1998). 

  61. X. Zhu, H. Zhang, Y. Zhang, Y. Liang, X. Wang, and B. Yi, "An ultrathin self-humidifying membrane for PEM fuel cell application: Fabrication, characterization, and experimental analysis", J. Phys. Chem. B, 110, 14240 (2006). 

  62. C. Bi, H. Zhang, Y. Zhang, X. Zhu, Y. Ma, H. Dai, and S. Xiao, "Fabrication and investigation of $SiO_2$ supported sulfated zirconia/Nafion(R) self-humidifying membrane for proton exchange membrane fuel cell applications", J. Power Sources, 184, 197 (2008). 

  63. Z. Chen, B. Holmberg, W. Li, X. Wang, W. Deng, R. Munoz, and Y. Yan, "Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell", Chem. Mater., 18, 5669 (2006). 

  64. S. Meenakshi, A. K. Sahu, S. D. Bhat, P. Sridhar, S. Pitchumani, and A. K. Shukla, "Mesostructured-aluminosilicate-Nafion hybrid membranes for direct methanol fuel cells", Electrochim. Acta., 89, 35 (2013). 

  65. U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, and J. Pastre, "Metal- organic frameworks-prospective industrial applications", J. Mater. Chem., 16, 626 (2006). 

  66. S. Mikhailenko, D. Desplantier-Giscard, C. Danumah, and S. Kaliaguine, "Solid electrolyte properties of sulfonic acid functionalized mesostructured porous silica", Microporous Mesoporous Mater., 52, 29 (2002). 

  67. Y.-H. Liu, B. Yi, Z.-G. Shao, L. Wang, D. Xing, and H. Zhang, "Pt/CNTs-Nafion reinforced and self-humidifying composite membrane for PEMFC applications", J. Power Sources, 163, 807 (2007). 

  68. J.-M. Thomassin, J. Kollar, G. Caldarella, A. Germain, R. Jerome, and C. Detrembleur, "Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications", J. Membr. Sci., 303, 252 (2007). 

  69. L. Wang, D. M. Xing, H. M. Zhang, H. M. Yu, Y. H. Liu, and B. L. Yi, "MWCNTs reinforced Nafion $^{(R)}$ membrane prepared by a novel solution- cast method for PEMFC", J. Power Sources, 176, 270 (2008). 

  70. Y.-C. Cao, C. Xu, X. Wu, X. Wang, L. Xing, and K. Scott, "A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells", J. Power Sources, 196, 8377 (2011). 

  71. H.-C. Chien, L.-D. Tsai, C.-P. Huang, C.-y. Kang, J.-N. Lin, and F.-C. Chang, "Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells", Int. J. Hydrogen Energy, 38, 13792 (2013). 

  72. Y. Heo, H. Im, and J. Kim, "The effect of sulfonated graphene oxide on Sulfonated Poly (Ether Ether Ketone) membrane for direct methanol fuel cells", J. Membr. Sci., 425-426, 11 (2013). 

  73. Z. Jiang, Y. Shi, Z.-J. Jiang, X. Tian, L. Luo, and W. Chen, "High performance of a freestanding sulfonic acid functionalized holey graphene oxide paper as a proton conducting polymer electrolyte for air-breathing direct methanol fuel cells", J. Mater. Chem. A, 2, 6494 (2014). 

  74. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar, "Surface modification of inorganic nanoparticles for development of organic- inorganic nanocomposites-A review", Prog. Polym. Sci., 38, 1232 (2013). 

  75. Y.-H. Su, Y.-L. Liu, Y.-M. Sun, J.-Y. Lai, D.-M. Wang, Y. Gao, B. Liu, and M. D. Guiver, "Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells", J. Membr. Sci., 296, 21 (2007). 

  76. H. Hagihara, H. Uchida, and M. Watanabe, "Preparation of highly dispersed $SiO_2$ and Pt particles in Nafion $^(R)$ 112 for self-humidifying electrolyte membranes in fuel cells", Electrochim. Acta, 51, 3979 (2006). 

  77. M.-N. Kim, Y.-W. Choi, T.-Y. Kim, M.-S. Lee, C.-S. Kim, T.-H. Yang, and K.-S. Nam, "Characterization of sulfonated ploy(aryl ether sulfone) membranes impregnated with sulfated $ZrO_2$ ", Membr. J., 21, 30 (2011). 

  78. C. S. Karthikeyan, S. P. Nunes, L. A. S. A. Prado, M. L. Ponce, H. Silva, B. Ruffmann, and K. Schulte, "Polymer nanocomposite membranes for DMFC application", J. Membr. Sci., 254, 139 (2005). 

  79. J. Kim, J.-D. Jeon, and S.-Y. Kwak, "Nafion-based composite membrane with a permselective layered silicate layer for vanadium redox flow battery", Electrochem. Comm., 38, 68 (2014). 

  80. E. Vijayakumar and D. Sangeetha, "A quaternized mesoporous silica/polysulfone composite membrane for an efficient alkaline fuel cell application", RSC Adv., 5, 42828 (2015). 

  81. V. Elumalai and S. Dharmalingam, "Synthesis characterization and performance evaluation of ionic liquid immobilized SBA-15/quaternised polysulfone composite membrane for alkaline fuel cell", Microporous Mesoporous Mater., 236, 260 (2016). 

  82. N. Qian, Z. Duan, Y. Zhu, Q. Xiang, and J. Xu, "4,4'-Diaminodiphenyl sulfone functionalized SBA-15: Toluene sensing properties and improved proton conductivity", J. Physic. Chem. C, 118, 1879 (2014). 

  83. W.-F. Chen, J.-S. Wu, and P.-L. Kuo, "Poly(oxyalkylene) diamine-Functionalized Carbon Nanotube/ Perfluorosulfonated Polymer Composites: Synthesis, Water State, and Conductivity", Chem. Mater., 20, 5756 (2008). 

  84. Y. Wang, Z. Jiang, H. Li, and D. Yang, "Chitosan membranes filled by GPTMS-modified zeolite beta particles with low methanol permeability for DMFC", Chem. Eng. Process.: Process Intensification., 49, 278 (2010). 

  85. L. Zhiting, D. Xuezhi, Q. Gang, Z. Xinggui, and Y. Weikang, "Eco-friendly one-pot synthesis of highly dispersible functionalized graphene nanosheets with free amino groups", Nanotechnol., 24, 045609 (2013). 

  86. C. W. Jones, K. Tsuji, and M. E. Davis, "Organic-functionalized molecular sieves as shape- selective catalysts", Nature, 393, 52 (1998). 

  87. R. H. Tunuguntla, F. I. Allen, K. Kim, A. Belliveau, and A. Noy, "Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins", Nat. Nanotechnol., 11, 639 (2016). 

  88. F. Fornasiero, J. B. In, S. Kim, H. G. Park, Y. Wang, C. P. Grigoropoulos, A. Noy, and O. Bakajin, "pH-Tunable ion selectivity in carbon nanotube pores", Langmuir, 26, 14848 (2010). 

  89. S. H. Joo, C. Pak, E. A. Kim, Y. H. Lee, H. Chang, D. Seung, Y. S. Choi, J.-B. Park, and T. Kim, "Functionalized carbon nanotube-poly (arylene sulfone) composite membranes for direct methanol fuel cells with enhanced performance", J. Power Sources, 180, 63 (2008). 

  90. K. J. Lee and Y. H. Chu, "Preparation of the graphene oxide (GO)/Nafion composite membrane for the vanadium redox flow battery (VRB) system", Vacuum, 107, 269 (2014). 

  91. P. Dai, Z.-H. Mo, R.-W. Xu, S. Zhang, X. Lin, W.-F. Lin, and Y.-X. Wu, "Development of a cross-linked quaternized poly(styrene-b-isobutyleneb- styrene)/graphene oxide composite anion exchange membrane for direct alkaline methanol fuel cell application", RSC Adv., 6, 52122 (2016). 

  92. Z. Luo, Y. Gong, X. Liao, Y. Pan, and H. Zhang, "Nanocomposite membranes modified by graphene-based materials for anion exchange membrane fuel cells", RSC Adv., 6, 13618 (2016). 

  93. J. Li, X. Yan, Y. Zhang, B. Zhao, and G. He, "Enhanced hydroxide conductivity of imidazolium functionalized polysulfone anion exchange membrane by doping imidazolium surface-functionalized nanocomposites", RSC Adv., 6, 58380 (2016). 

  94. L. Liu, C. Tong, Y. He, Y. Zhao, and C. Lu, "Enhanced properties of quaternized graphenes reinforced polysulfone based composite anion exchange membranes for alkaline fuel cell", J. Membr. Sci., 487, 99 (2015). 

  95. J. Pandey and B. R. Tankal, "Performance of the vanadium redox-flow battery (VRB) for Si-PWA/ PVA nanocomposite membrane", J. Solid State Electrochem., 20, 2259 (2016). 

  96. W. Dai, Y. Shen, Z. Li, L. Yu, J. Xi, and X. Qiu, "SPEEK/Graphene oxide nanocomposite membranes with superior cyclability for highly efficient vanadium redox flow battery", J. Mater. Chem. A, 2, 12423 (2014). 

  97. X. Teng, Y. Zhao, J. Xi, Z. Wu, X. Qiu, and L. Chen, "Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery", J. Power Sources, 189, 1240 (2009). 

  98. S. Mulyati, R. Takagi, A. Fujii, Y. Ohmukai, and H. Matsuyama, "Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an electrodialysis process, using polyelectrolyte multilayer deposition", J. Membr. Sci., 431, 113 (2013). 

  99. M.-K. Park, S. Deng, and R. C. Advincula, "pH-Sensitive bipolar ion-permselective ultrathin films", J. Am. Chem. Soc., 126, 13723 (2004). 

  100. C. H. Park, S. Y. Lee, D. S. Hwang, D. W. Shin, D. H. Cho, K. H. Lee, T.-W. Kim, T.-W. Kim, M. Lee, D.-S. Kim, C. M. Doherty, A. W. Thornton, A. J. Hill, M. D. Guiver, and Y. M. Lee, "Nanocrack-regulated self-humidifying membranes", Nature, 532, 480 (2016). 

  101. S. Hu, M. Lozada-Hidalgo, F. C. Wang, A. Mishchenko, F. Schedin, R. R. Nair, E. W. Hill, D. W. Boukhvalov, M. I. Katsnelson, R. A. W. Dryfe, I. V. Grigorieva, H. A. Wu, and A. K. Geim, "Proton transport through one-atom-thick crystals", Nature, 516, 227 (2014). 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로