$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] LED Driver with TRIAC Dimming Control by Variable Switched Capacitance for Power Regulation 원문보기

Journal of power electronics, v.15 no.2, 2015년, pp.555 - 566  

Lee, Eun-Soo (Department of Nuclear and Quantum Engineering, KAIST) ,  Sohn, Yeung-Hoon (Department of Electrical Engineering, KAIST) ,  Nguyen, Duy Tan (Department of Nuclear and Quantum Engineering, KAIST) ,  Cheon, Jun-Pil (Department of Nuclear and Quantum Engineering, KAIST) ,  Rim, Chun-Taek (Department of Nuclear and Quantum Engineering, KAIST)

Abstract AI-Helper 아이콘AI-Helper

A TRIAC dimming LED driver that can control the brightness of LED arrays for a wide range of source voltage variations is proposed in this paper. Unlike conventional PWM LED drivers, the proposed LED driver adopts a TRIAC switch, which inherently guarantees zero current switching and has been proven...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • (a) Original circuit. (b) Thevenin’s equivalent circuit.
본문요약 정보가 도움이 되었나요?

참고문헌 (46)

  1. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O.Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting-diodes for solid-state lighting,” Journal of Display Technology, Vol. 3, No. 2, pp. 160-175, Jun. 2007. 

  2. J. Cardesin, J. Ribas, J. Garcia-Garcia, M. Rico-Secades, A. J. Calleja, E. L. Corominas, and M. A. Dalla Costa, “LED permanent emergency lighting system based on a single magnetic component,” IEEE Trans. Power Electron., Vol. 24, No. 5, pp. 1409-1416, May 2009. 

  3. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher,M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Topics Quantum Electron., Vol. 8, No. 2, pp. 310–320, Apr. 2002. 

  4. Matthias Wendt and Jan-Willem Andriesse, “LEDs in real lighting applications: from niche markets to general lighting,” IEEE Industry Applications Conference, pp. 2601-2603, 2006. 

  5. S. Y. (Ron) Hui and Y. X. Qin, “A general photo-electro-thermal theory for light emitting diode (LED) systems,” IEEE Trans. Power Electron., Vol. 24, No. 8, pp. 1967-1976, Aug. 2009. 

  6. Y. K. Cheng and K. W. E. Cheng, “General study for using LED to replace traditional lighting devices,” IEEE International Conference on Power Electronics Systems and Applications (ICPESA), pp. 173-177, 2006. 

  7. M. S. Shur and R. Zukauskas, “Solid-state lighting: toward superior illumination,” in Proc. the IEEE, Vol. 93, No. 10, pp. 1691-1703, 2005. 

  8. K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Sel. Topics Quantum Electron., Vol. 8, No. 2, pp. 321-332, Mar. 2002. 

  9. Q. Hu and R. Zane, “A 0.9 PF LED driver with small LED current ripple based on series-input digitally-controlled converter modules,” IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2314-2320, 2010. 

  10. J. M. Alonso, J. Viña, D. G. Vaquero, G. Martínez, and R. Osorio, “Analysis and design of the integrated double buck-boost converter as a high-power-factor driver for power-LED lamps,” IEEE Trans. Ind. Electron., Vol. 59, No. 4, pp. 1689-1697, Apr. 2012. 

  11. Q. Hu and R. Zane, “LED driver circuit with series-input-connected converter cells operating in continuous conduction mode,” IEEE Trans. Power Electron., Vol. 25, No. 3, pp. 574-582, Mar. 2010. 

  12. Z. Ye, F. Greenfeld, and Z. Liang, “Single-stage offline SEPIC converter with power factor correction to drive high brightness LEDs,” IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 546-553, 2009. 

  13. Y. Hu, L. Huber, and M. M. Jovanovi´, “Single-stage, universal-input AC/DC LED driver with current-controlled variable PFC boost inductor,” IEEE Trans. Power Electron., Vol. 27, No. 3, pp. 1579-1588, Mar. 2012. 

  14. X. Xie, J. Wang, C. Zhao, Q. Lu, and S. Liu, “A novel output current estimation and regulation circuit for primary side controlled high power factor single-stage flyback LED driver,” IEEE Trans. Power Electron., Vol. 27, No. 11, pp. 4602-4612, Nov. 2012. 

  15. Y. Zhou, X. Li, X. Ye, and G. Zhai, “A remaining useful life prediction method based on condition monitoring for LED driver,” IEEE conference on Prognostics and System Health Management (PHM), pp. 1-5, 2012. 

  16. Q. Hu and R. Zane, “Minimizing required energy storage in off-line LED drivers based on series-input converter modules,” IEEE Trans. Power Electron., Vol. 26, No. 10, pp. 2887-2895, Oct. 2011. 

  17. Y. Hu and M. M. Jovanovic, “A novel LED driver with adaptive drive voltage,” IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 565-571, 2008. 

  18. M. Ali, M. Orabi, M. E. Ahmed, and A. El-Aroudi, “Design consideration of modified SEPIC converter for LED lamp driver,” IEEE Power Electronics for Distributed Generation Systems (PEDG), pp. 394-399, 2010. 

  19. D. Gacio, J. M. Alonso, A. J. Calleja, J. Garcia, and M. Rico-Secades, “A universal-input single-stage high-power-factor power supply for HB-LEDs based on integrated buck–flyback converter,” IEEE Trans. Ind. Electron., Vol. 58, No. 2, pp. 589-599, Feb. 2011. 

  20. J. M. Alonso, J. Viña, D. G. Vaquero, G. Martínez, and R. Osorio, “Analysis and design of the integrated double buck–boost converter as a high-power-factor driver for power-LED lamps,” IEEE Trans. Ind. Electron., Vol. 59, No. 4, pp. 1689-1697, Apr. 2012. 

  21. S. Y. R. Hui, S. N. Li, X. H. Tao, W. Chen, and W. M. Ng, “A novel passive offline LED driver with long lifetime,” IEEE Trans. Power Electron., Vol. 25, No. 10, pp. 2665-2672, Oct. 2012. 

  22. W. Chen, “A comparative study on the circuit topologies for offline passive light-emitting diode (LED) drivers with long lifetime & high efficiency,” IEEE Energy Conversion Congress and Exposition (ECCE), pp. 724-730, 2010. 

  23. B. H. Lee, H. J. Kim, and C. T. Rim, “Robust passive LED driver compatible with conventional rapid-start ballast,” IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3694-3706, Dec. 2011. 

  24. E. S. Lee, B. H. Choi, J. P. Cheon, B. C. Kim, and C. T. Rim, “Temperature-robust LC3 LED driver with low THD, high efficiency, and long life,” IEEE International Power Electronics Conference (IPEC), pp. 3358-3364, 2014. 

  25. Y.-H. Liu, Z.-Z. Yang, and S.-C. Wang, “A novel sequential-color RGB-LED backlight driving system with local dimming control and dynamic bus voltage regulation,” IEEE Trans. Consum. Electron., Vol. 56, No. 4, pp. 2445-2452, Nov. 2010. 

  26. A. Mirvakili and V. Joyner, “A digitally-controlled, bi-level CMOS LED driver circuit combining PWM dimming and data transmission for visible light networks,” IEEE GLOBECOM Workshops (GC Wkshps), pp. 1067-1071, 2010. 

  27. W. Feng, F. C. Lee, and P. Mattavelli, “Optimal trajectory control of LLC resonant converters for LED PWM dimming,” IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 979-987, Feb. 2014. 

  28. D. Gacio, J. M. Alonso, J. Garcia, L. Campa, M. J. Crespo, and M. Rico-Secades, “PWM series dimming for slow-dynamics HPF LED drivers: the high-frequency approach,” IEEE Trans. Ind. Electron., Vol. 59, No. 4, pp. 1717-1727, Apr. 2012. 

  29. J. Zhang, H. Zeng, and T. Jiang, “A primary-side control scheme for high-power-factor LED driver with TRIAC dimming capability,” IEEE Trans. Power Electron., Vol. 27, No. 11, pp. 4619-4629, Nov. 2012. 

  30. L. Yan, B. Chen, and J. Zheng, “A new TRIAC dimmable LED driver control method achieves high-PF and quality-of-light,” IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 969-974, 2012. 

  31. J. T. Hwang, M. S. Jung, D. H. Kim, J. H. Lee, M. H. Jung, and J. H. Shin, “Off-the-line primary side regulation LED lamp driver with single-stage PFC and TRIAC dimming using LED forward voltage and duty variation tracking control,” IEEE J. Solid-State Circuit, Vol. 47, No. 12, pp. 3081-3094, Dec. 2012. 

  32. R. Zhang and H. S.-H. Chung, “A TRIAC-dimmable LED lamp driver with wide dimming range,” IEEE Trans. Power Electron., Vol. 29, No. 3, pp. 1434-1446, Mar. 2014. 

  33. J.-H. Cheng, A. F. Witulski, and J. L. Vollin, “A small-signal model utilizing amplitude modulation for the class-D converter at fixed frequency,” IEEE Trans. Power Electron., Vol. 15, No. 6, pp. 1204-1211, Nov. 2000. 

  34. A. Katsuki and Y. Sugimoto, “Design of a distortion-free PFC CV/CC ac power supply having variable capacitance devices,” IEEE Telecommunications Energy Conference (INTELEC), pp. 1-6, 2011. 

  35. T. T. Nguyen, M. F. Kandlawala, A. H. Rahim, and M. A. Alam, “Dynamic performance of a grid connected wind generation system with fuzzy logic controlled variable capacitance compensation,” IEEE Australasian Universities Power Engineering Conference (AUPEC), pp. 1-6, 2008. 

  36. M. Uenohara, “Noise consideration of the variable capacitance parametric amplifier,” IEEE Proceedings of the IRE, Vol. 48, No. 2, pp. 169-179, 1960. 

  37. J. Huh, S. W. Lee, W. Y. Lee, G. H. Cho, and C. T. Rim, “Narrow-width inductive power transfer system for online electrical vehicles,” IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3666-3679, Dec. 2011. 

  38. S. Lee, B. Choi, and C. T. Rim, “Dynamics characterization of the inductive power transfer system for online electric vehicles by Laplace phasor transform,” IEEE Trans. Power Electron., Vol. 28, No. 12, pp. 5902-5909, Dec. 2013. 

  39. C. T. Rim and G. H. Cho, “Phasor transformation and its application to the DC/AC analyses of frequency/phase controlled series resonant converters (SRC),” IEEE Trans. Power Electron., Vol. 5, No. 2, pp. 201-211, Apr. 1990. 

  40. C. T. Rim, D. Y. Hu, and G. H. Cho, “Transformers as equivalent circuits for switches: general proofs and D-Q transformation-based analysis,” IEEE Trans. Ind. Appl., Vol. 26, No. 4, pp. 777-785, Jul./Aug. 1990. 

  41. C. T. Rim, “Unified general phasor transformation for AC converters,” IEEE Trans. Power Electron., Vol. 26, No. 9, pp. 2465-2475, Sep. 2011. 

  42. C. B. Park, S. W. Lee, and C. T. Rim, “Static and dynamic analyses of three-phase rectifier with LC input filter by Laplace phasor transformation,” IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1570-1577, 2012. 

  43. N. O. Sokal, K. K. Sum, and D. C. Hamill, “A capacitor-fed, voltage-step-down, single-phase, non-isolated rectifier,” IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 208-215, 1998. 

  44. V. M. Rajović and N. S. Jovičić, “The capacitive divider power supply and its design problem,” IEEE 19 th Telecommunications Forum (TELFOR), pp. 852-855, 2011. 

  45. ENERGY STAR Program Requirements For Solid State Lighting Luminaires, Eligibility Criteria – Version 1.1, 2008. 

  46. Limits for Harmonic Current Emissions (Equipment Input Current ≤ 16A per Phase), IEC 61000-3-2 class C Std., 2009. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로