$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

텍스트 마이닝 기법을 이용한 컴퓨터공학 및 정보학 분야 연구동향 조사: DBLP의 학술회의 데이터를 중심으로
Investigation of Topic Trends in Computer and Information Science by Text Mining Techniques: From the Perspective of Conferences in DBLP 원문보기

정보관리학회지 = Journal of the Korean society for information management, v.32 no.1 = no.95, 2015년, pp.135 - 152  

김수연 (연세대학교) ,  송성전 (연세대학교 문헌정보학과 대학원) ,  송민 (연세대학교 문헌정보학과)

초록
AI-Helper 아이콘AI-Helper

이 논문의 연구목적은 컴퓨터공학 및 정보학 관련 연구동향을 분석하는 것이다. 이를 위해 텍스트마이닝 기법을 이용하여 DBLP(Digital Bibliography & Library Project)의 학술회의 데이터를 분석하였다. 대부분의 연구동향 분석 연구가 계량서지학적 연구방법을 사용한 것과 달리 이 논문에서는 LDA(Latent Dirichlet Allocation) 기반 다항분포 토픽모델링 기법을 이용하였다. 가능하면 컴퓨터공학 및 정보학과 관련된 광범위한 자료를 수집하기 위해서 DBLP에서 컴퓨터공학 및 정보학과 관련된 353개의 학술회의를 수집 대상으로 하였으며 2000년부터 2011년 기간 동안 출판된 236,170개의 문헌을 수집하였다. 토픽모델링 결과와 주제별 문헌 수, 주제별 학술회의 수를 조사하여 2000년부터 2011년 사이의 주제별 상위 저자와 주제별 상위 학술회의를 제시하였다. 주제동향 분석 결과 네트워크 관련 연구 주제 분야는 성장 패턴을 보였으며, 인공지능, 데이터마이닝 관련 연구 분야는 쇠퇴 패턴을 나타냈고, 지속 패턴을 보인 주제는 웹, 텍스트마이닝, 정보검색, 데이터베이스 관련 연구 주제이며, HCI, 정보시스템, 멀티미디어 시스템 관련 연구 주제 분야는 성장과 하락을 지속하는 변동 패턴을 나타냈다.

Abstract AI-Helper 아이콘AI-Helper

The goal of this paper is to explore the field of Computer and Information Science with the aid of text mining techniques by mining Computer and Information Science related conference data available in DBLP (Digital Bibliography & Library Project). Although studies based on bibliometric analysis are...

주제어

참고문헌 (28)

  1. Adamic, L., & Adar, E. (2005). How to search a social network. Social Networks, 27(3), 187-203. 

  2. Blei, D., & Lafferty, J. (2006). Dynamic topic models. In Proceedings of the 23rd International Conference on Machine Learning, 113-120. 

  3. Blei, D., Ng A., & Jordan, M. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993-1022. 

  4. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30, 107-117. 

  5. Buckland, M. (2012). What kind of science can information science be?. Journal of the American Society for Information Science and Technology, 63(1), 1-7. 

  6. Chen, C., & Carr, L. (1999). Visualizing the evolution of a subject domain: A case study. In Proceedings of the conference on Visualization '99: celebrating ten years, 449-452. 

  7. Cutting, D., Karger, D., & Pederson, J. (1993). Constant interaction-time scatter/gather browsing of very large document collections. In Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 126-134. 

  8. Frank, E., Paynter, G., Witten, I., Gutwin, C., & Nevill-Manning, C. (1999). Domain-specific keyphrase extraction. In Proceeding of 16th International Joint Conference on Artificial Intelligence, 668-673. 

  9. Glanzel, W. (2012). Bibliometric methods for detecting and analysing emerging research topics. El profesional de la informacion, 21(2), 194-201. 

  10. Griffiths, T., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National Academy of Sciences, 101(suppl. 1), 5228-5235. 

  11. HaCohen-Kerner, Y., Gross, Z., & Masa, A. (2005). Automatic extraction and learning of keyphrases from scientific articles. In Proceedings of the 6th International Conference on Computational Linguistics and Intelligent Text Processing, 657-669. 

  12. He, D., & Parker, S. (2010). Topic dynamics: an alternative model of 'bursts' in streams of topics. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, 443-452. 

  13. Hulth, A. (2003). Improved automatic keyword extraction given more linguistic knowledge. In Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, 216-223. 

  14. Janssens, F., Glanzel W., & De Moor, B. (2008). A hybrid mapping of information science. Scientometrics, 75(3), 607-631. 

  15. Kleinberg, J. (2003). Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery, 7(4), 373-397. 

  16. Liu, F., Liu, F., & Liu, Y. (2008). Automatic keyword extraction for the meeting corpus using supervised approach and bigram expansion. In Proceedings of 2008 IEEE Workshop on Spoken Language Technology, 181-184. 

  17. Liu, Z., Huang, W., Zheng, Y., & Sun, M. (2010). Automatic keyphrase extraction via topic decomposition. Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, 366-376. 

  18. McCallum, A. (2002). MALLET: A Machine learning for language toolkit. Retrieved from http://mallet.cs.umass.edu 

  19. Matsuo, Y., & Ishizuka, M. (2004). Keyword extraction from a single document using word co-occurrence statistical information. International Journal on Artificial Intelligence Tools, 13(1), 157-169. 

  20. Merriam-Webster and American Heritage Dictionary. Retrieved from http://www.britannica.com/EBchecked/topic/19759/The-American-Heritage-Dictionary 

  21. Mimno, D., & McCallum, A. (2008). Topic models conditioned on arbitrary features with Dirichlet-multinomial regression. Retrieved from http://arxiv.org/abs/1206.3278v1 

  22. Tang, X., Yang, C. C., & Song, M. (2013). Understanding the evolution of multiple scientific research domains using a content and network approach. Journal of the American Society for Information Science and Technology, 64(5), 1065-1075. 

  23. Treeratpituk, P., & Callan, J. (2006). Automatically labeling hierarchical clusters. In Proceedings of the 2006 International Conference on Digital Government Research, 167-176. 

  24. Wan, X., Yang, J., & Xiao, J. (2007). Towards an iterative reinforcement approach for simultaneous document summarization and keyword extraction. Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, 552-559. 

  25. Wang, C., Blei, D., & Heckerman, D. (2012). Continuous time dynamic topic models. Retrieved from http://arxiv.org/abs/1206.3298v1 

  26. Wang, X., Mohanty, N., & McCallum, A. (2005). Group and topic discovery from relations and text. The 11th ACM SIGKDD International conference on Knowledge Discovery and Data Mining Workshop on Link Discovery: Issues, Approaches & Applications, 28-35. 

  27. White, D., & McCain, W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972-1995. Journal of American Society of Information Science and Technology, 49(4), 327-355. 

  28. Xu, J., Marshall, B., Kaza, S., & Chen, H. (2004). Analyzing and visualizing criminal network dynamics: A case study. In H.Chen, R.Moore, D.D.Zeng, & J.Leavitt (Eds.), Lecture Notes in Computer Science, 3073: Intelligence and Security Informatics, 359-377. Berlin: Springer. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로